• Title/Summary/Keyword: Branch pipe

Search Result 134, Processing Time 0.022 seconds

A Study on Fluid Flow in the Intake Manifold for an Engine (엔진 흡기관내의 유체유동에 관한 연구)

  • 성낙원;이응석;강건용;엄종호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.295-307
    • /
    • 1988
  • In order to predict performance of the intake manifold, which is dependent on the length and diameter of a resonance pipe, the Fluid Dynamic Model for 4-cylinder diesel engine is developed using two step Lax-Wendroff method to solve the governing equations of air flow in the intake system. Boundary conditions at the intake valve, branch at the manifolds, and pipe end are also modeled. The results of the models are compared with the experimental results of a motored engine. The model is capable of predicting the real phenomena satisfactorily with reasonable computing time.

Strengthening of steel hollow pipe sections subjected to transverse loads using CFRP

  • Narmashiri, Kambiz;Mehramiz, Ghadir
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.163-173
    • /
    • 2016
  • Nowadays using Carbon Fiber Reinforced Polymer (CFRP) has been expanded in strengthening steel structures. Given that few studies have taken about strengthening of steel hollow pipe sections using CFRP, in present study, the effects of CFRP sheets using two layers as well as in combination with additional reinforcing strips has been assessment. Strengthening of five specimens was carried out in laboratory tests. As well as numerical simulation was performed for all specimens by Finite Element Method (FEM) using ABAQUS software and high correlation between the results of numerical models with experimental data indicate the power of FEM in this field. The results of both laboratory and simulated specimens showed that load-bearing capacity of circular cross-sections can be significantly increased using CFRP retrofitting technique. Also, application of additional CFRP reinforcing strips and layers caused more strength for the strengthened specimens.

Flow Visualization Study on the Turbulent Mixing of Two Fluid Streams(II) (분지관 혼합기의 난류혼합에 대한 유동가시화 연구 (II))

  • Kim, Gyeong-Cheon;Sin, Dae-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1013-1021
    • /
    • 1998
  • Various vortical structures are investigated by using three kinds of flow visualization methods in branch pipe flows. There are two typical flow patterns when a jet from the branch pipe with various angles is injected to the main pipe cross flow. The velocity range of cross flow of the main pipe is 0.2 m/s ~ 1.2 m/s and the corresponding Reynolds number, R$_{p}$ is of the range 1.5 * 10$^{3}$ ~ 9.02 * 10$^{3}$. The velocity ratio(R), jet velocity/cross flow velocity, is chosen from 1.3 to 4. The subsequent behavior and development of the ring vortices which are created at the jet boundary mainly depend on the velocity ratio. An empirical relation for the shedding frequency of the ring vortices is derived. It is also found that there are two different vortex shedding mechanism in the mixing of two fluid streams.s.

Ice slurry transporting and branching characteristics for the district cooling (지역냉방을 위한 아이스슬러리 시스템의 수송 및 분기 특성)

  • Lee, Sang-Hoon;Yoo, Ho-Seon;Lee, Yoon-Pyo;Lee, Chang-Jun;Kwon, Hyeok-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.662-667
    • /
    • 2009
  • The research are performed to check the characteristics of the ice slurry transport system for the district cooling. The system are installed at the 1st floored building which is as large as the $1204\;m^2$ ($86\;m{\times}14\;m$), and the pumping power and branching characteristics are measured by transporting of the ice slurry. The ice slurry transporting pipe is as long as 200 m. For the same cooling load, the higher IPF is, the lower the transporting flow rate and the pumping power are. But when the IPF is higher than 15%, no less decrease of the pumping power does happen. For the branching characteristics, through the branch pipe where the flow resistance is higher, the higher IPF is measured. A little higher IPF is measured at the thermal expansion branch.

  • PDF

Assessment of cyclic behavior of chevron bracing frame system equipped with multi-pipe dampers

  • Behzadfar, Behnam;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.303-313
    • /
    • 2020
  • Spacious experimental and numerical investigation has been conducted by researchers to increase the ductility and energy dissipation of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy dissiption, is the use of energy-absorbing systems. In this regard, the cyclic behavior of a chevron bracing frame system equipped with multi-pipe dampers (CBF-MPD) was investigated through finite element method. The purpose of this study was to evaluate and improve the behavior of the CBF using MPDs. Three-dimensional models of the chevron brace frame were developed via nonlinear finite element method using ABAQUS software. Finite element models included the chevron brace frame and the chevron brace frame equipped with multi-pipe dampers. The chevron brace frame model was selected as the base model for comparing and evaluating the effects of multi-tube dampers. Finite element models were then analyzed under cyclic loading and nonlinear static methods. Validation of the results of the finite element method was performed against the test results. In parametric studies, the influence of the diameter parameter to the thickness (D/t) ratio of the pipe dampers was investigated. The results indicated that the shear capacity of the pipe damper has a significant influence on determining the bracing behavior. Also, the results show that the corresponding displacement with the maximum force in the CBF-MPD compared to the CBF, increased by an average of 2.72 equal. Also, the proper choice for the dimensions of the pipe dampers increased the ductility and energy absorption of the chevron brace frame.

Analysis of Pressure Fluctuations in Oil Hydraulic Pipe Network (유압 관로망에서의 압력 맥동 해석)

  • 이일영;정용길;양경욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.152-158
    • /
    • 1997
  • An analyzing method for pressure fluctuations in oil hydraulic pipe network was developed in this study. The object pipe network has multi-branch configuration, and the pipelines of it are composed of steel tubes, flexible hoses. Also, accumulators, orifices and lumped oil volume components are attached on it. Transfer matrix method, in other words impedance method, was used for the analysis. The reliability and usefulness of the analyzing method were confirmed by investigation computed results and experimental results got in this study.

  • PDF

Assessment of ECCMIX component in RELAP5 based on ECCS experiment

  • Song, Gongle;Zhang, Dalin;Su, G.H.;Chen, Guo;Tian, Wenxi;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • ECCMIX component was introduced in RELAP5/MOD3 for calculating the interfacial condensation. Compared to other existing components in RELAP5, user experience of ECCMIX component is restricted to developmental assessment applications. To evaluate the capability of the ECCMIX component, ECCS experiment was conducted which included single-phase and two-phase thermal mixing. The experiment was carried out with test sections containing a main pipe (70 mm inner diameter) and a branch pipe (21 mm inner diameter) under the atmospheric pressure. The steam mass flow in the main pipe ranged from 0 to 0.0347 kg/s, and the subcooled water mass flow in the branch pipe ranged from 0.0278 to 0.1389 kg/s. The comparison of the experimental data with the calculation results illuminated that although the ECCMIX component was more difficult to converge than Branch component, it was a more appropriate manner to simulate interfacial condensation under two-phase thermal mixing circumstance, while the two components had no differences under single-phase circumstance.

Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper

  • Kavianipour, Omid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.175-187
    • /
    • 2017
  • This paper deals with a uniform cantilever Euler-Bernoulli beam subjected to follower and transversal force at its free end as a model for a pipe conveying fluid under electromagnetic damper force. The electromagnetic damper is composed of a permanent-magnet DC motor, a ball screw and a nut. The main objective of the current work is to reduce the pipe vibration resulting from the fluid velocity and allow it to transform into electric energy. To pursue this goal, the stability and vibration of the beam model was studied using Ritz and Newmark methods. It was observed that increasing the fluid velocity results in a decrease in the motion of the free end of the pipe. The results of simulation showed that the designed semiactive electromagnetic damper controlled by on-off damping control strategy decreased the vibration amplitude of the pipe about 5.9% and regenerated energy nearly 1.9 (mJ/s). It was also revealed that the designed semi-active electromagnetic damper has better performance and more energy regeneration than the passive electromagnetic damper.

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.