• Title/Summary/Keyword: Braking systems

Search Result 253, Processing Time 0.027 seconds

The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model (솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석)

  • 강상욱;김창진;이대희;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

An Experimental Investigation of a Collision Warning System for Automobiles using Hardware-in-the-Loop Simulations (차간거리 경보시스템의 HiLS 구현)

  • 송철기;김성하;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.222-227
    • /
    • 1998
  • Collision warning systems have been an active research and development area as the interests and demands for ASV's (Advanced Safety Vehicles) have increased. This paper presents an experimental investigation of a collision warning system for automobiles. A collision warning HiLS(Hardware-in-the-Loop Simulation) system has been designed and used to test the collision warning algorithm, radar sensors, and warning displays under realistic operating conditions in the laboratory. the collision warning algorithm is operated by a warning index, which is a function of the warning distance and the braking distance. The computer calculates velocities of the preceding vehicle and following vehicle, relative distance and relative velocity of the vehicles using vehicle simulation models. The relative distance and the relative velocity are applied to the vehicle simulator controlled by a DC motor.

  • PDF

Simulation of Vehicle Steering Control through Differential Braking (차동 제동을 이용한 조향 제어 시뮬레이션)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

Steady State Analysis for Power System of HSR with Active Transformer

  • Kim, Wook-Won;Kim, Hyung-Chul;Shin, Seung-Kwon;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.257-264
    • /
    • 2016
  • In this paper, new electric railway feeding system which has active transformer is modeled for evaluating the steady state analysis using PSCAD/EMTDC. Equivalent models including power supply, feeder, train and transformers are proposed for simplifying the model of the feeding system in high speed electric railway. In case study, simulation results applied to proposed model are compared with the conventional and new systems through the catenary voltage, three-phase voltage of PCC (Point of Common Coupling) and the efficiency of regenerative braking energy.

New PWM Technique for Two-Phase Brushless DC Motor Drives

  • Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1107-1115
    • /
    • 2013
  • A new PWM technique for a two-phase BLDC motor fed by a two-phase eight-switch inverter is proposed in this paper. It is well known that a two-phase eight-switch inverter can significantly improve power output compared with a two-phase six-switch inverter in a two-phase motor drive. To drive the two-phase BLDC motor simply and effectively, two normal PWM strategies are investigated to manage speed regulation. However, under the conditions of low speed and light load, especially during the braking process, the current in a short time of one period is near zero, which is a discontinuous waveform every half period. To solve it, a novel PWM technique is investigated to improve the operational performance of normal technique. Using the new PWM scheme, the current continues every half period and the braking performance is improved. The effectiveness of the proposed PWM method is verified through the experiments.

A Study on a Fuzzy Controller for the Electronic Braking Force Distribution System (전자식 차량 제동력 배분 시스템을 위한 퍼지제어기의 연구)

  • 김승대;김훈모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.220-229
    • /
    • 2000
  • In the brake systems a proportioning valve which reduces the brake pressure at each wheel cylinder for anti-locking of rear wheels is closely related with the safety of vehicles. But, it is impossible for a present proportioning valve to exactly control brake pressure because mechanically it is an open loop control system. So, in this paper we describe a electronic brake pressure distribution system using a fuzzy controller in order to exactly control brake pressure using a close loop control system. The object of electronic brake pressure distribution system is to change an cut-in pressure and an valve slop of proportioning valve in order to obtain better good performance of brake system than with mechanical system.

  • PDF

HUMAN-IN-THE-LOOP EVALUATION OF A VEHICLE STABILITY CONTROLLER USING A VEHICLE SIMULATOR

  • Chung, T.;Kim, J.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) system using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.

A Study on Braking and Driving Force Distribute Control for Active Traction Control System (능동 휠 토크 제어시스템 설계를 위한 제동력${\cdot}$구동력 배분제어에 관한연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1402-1406
    • /
    • 2005
  • A study on the vehicle stability is discussed. In the field of the studies the electronic control systems help overcoming the limit of improvement in vehicle performance with the methods above. Driving stability is mainly incorporated with the later motion of a vehicle generated by the driver's steering input. Recently VDC system has been studieed in order to improve the active stability. This VDC system uses the active braking force. This paper propose the ATC that uses driving force. This paper compared VDC with ATC through an experiment.

Design of redundancy interface between TCMS and ATC system, and brake control of free-axle system (TCMS와 ATC장치간 인터페이스 이중계 구현 및 무축제동 제어방안)

  • Hong Gu-sun;Han Shin;Han Jeong-soo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1461-1466
    • /
    • 2004
  • Recently Domestic EMU's on board signal systems are gradually changed form Cab signal(Fix Block) to Distance-to-go. Interfaces with on board signal system, TCMS Redundancy structure is mainly required. This paper suggest Manaul/Automatic Driving based on TCMS-ATC interface and design of backup system which is operated by Stan-by Computer when one of it's Local Interface Unit(LIU) is out of oder. For the purpose of Precision Train Stop, Distance-to-go signal system require accuracy speed. Free-axle structure is required for this system This paper suggest Free-axle braking system that lack of brake-force is compensated by the distributed brake-force using TCMS. And one of braking system has out of order, compensation of brake-force for Free-axle system. Then we prove our design to Complete Car Test

  • PDF

Optimal Array Design of the Permanent Magnet in an Eddy Current Brake (와전류 브레이크의 영구자석배열 최적설계)

  • Choi, Jae-Seok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.658-663
    • /
    • 2009
  • Eddy current is usually generated in the material with high conductivity by time-varying source such as AC current and also is induced by the moving source with relative velocity. The contactless magnetic brake makes use of the braking force from the eddy current generated by the moving source and currently used for the secondary brakes of heavy trucks, buses and rail vehicles. This study aims to design the magnetization pattern of the eddy current brake system of a permanent magnet type where the design aim is to maximize the braking force. The analysis of brake systems is based on the two-dimensional finite element analysis. We use the sequential linear programming as the optimizer and the adjoint variable method is applied for the sensitivity analysis.