• Title/Summary/Keyword: Braking friction

Search Result 203, Processing Time 0.028 seconds

Study of the Tribological Characteristics Based on the Hardness of the Brake Disk between the Sintered Metallic Friction Material and the Heat-resisting Steel Disks (디스크 경도에 따른 소결마찰재와 내열강 디스크의 마찰·마모 특성)

  • Na, Sun Joo;Park, Hyoung Chul;Kim, Sang Ho
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.42-49
    • /
    • 2015
  • Because of the growing need for high-speed transport options such as trains and aircraft, there is increasing demand for technology related to high-speed trains. Among them, braking systems are important in high-speed trains in terms of reliability. Especially, the disk brake system, in use in most high-speed trains, transforms kinetic energy into thermal energy and noise. Therefore, the material properties of both the friction materials and disks are expected to influence the tribological characteristics. In this paper, the tribological characteristics depend on the hardness of the brake disks between the Cu-based sintered metallic friction material and the heat-treated heat-resisting steel disks. A lab-scale dynamometer used to perform braking tests at a variety of braking speeds using dry conditions. The test results revealed that the hardness of the disks affects the friction coefficients, friction stabilities, and wear rates. Thus, the brake system using the heat-resisting steel disk requires proper heat-treatment. These differences are considered to be caused by the change in tribological mechanisms and the generation of an oxide layer on the friction surfaces. The oxide layers on the friction surfaces are confirmed to Fe2O3 by x-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) analysis.

Braking Performance of Ceramic Coated Discs

  • Kang, B.B.;Lee, H.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.429-430
    • /
    • 2002
  • In this study, three kinds of brake: discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. Plasma spray coating technique was used to coat ceramic powder on the discs. In the test, four commercial sintered brake pads were coupled with discs. Ceramic coated discs have shown good stability in friction coefficient at high speed and high energy braking conditions. However, ceramic coated discs caused more wear loss of pad mass than the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. Steel disc showed fluctuating friction coefficient at high speed but less wear loss of pad mass than ceramic coated discs.

  • PDF

A study on the presumption method of automobile velocity just before braking, using a accelerometer. (가속도계를 이용한 제동직전의 차속추정방법에 관한 연구)

  • 강영규;한응교;조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 1980
  • In the case of a automobile marking skid on road for a period of braking, in general, the automobile velocity just before rapid braking can be obtained by evaluating the coefficient of friction between tires and road. Up to now, the coefficient of friction has been derived from mean velocity measured by a time watch, but the automobile velocity obtained in this manner would be deviated from actual value considerably, due to errors arising from not only measuring time but other various factors. In this paper the presumption method of automobile velocity by accelerometer is presented so as to improve the accuracy of measurement, and to determine the velocity readily. The results obtained in this experiment show that the frictional coefficients between tires and road under the given experimental conditions are considered to take linear relation over the fixed velocity limits 30km/h to 50km/h while for the same limits of velocities the coefficients of friction by the time watch method are not valid ar low velocity range. It will be seen that the former is simple and reliable whilst the latter is cumbersome and unreliable.

  • PDF

Optimization of Disc Braking Force pattern from the viewpoint of Braking Energy (제동에너지 관점에서의 최적 디스크 제동력 패턴 설정)

  • Kim, Young-Guk;Park, Chan-Kyoung;Kim, Ki-Hwan;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.294-299
    • /
    • 2006
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. When the disc brake is applied in the high speed region, the wear of pad is increased rapidly. In this paper, we discuss the optimized patterns of the disc brake force from the view point of braking energy.

  • PDF

ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre (타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어)

  • Kim, Jungsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.

A Study on Shape Design of Motorcycle Disk using Thermal and Stress Analysis (모터싸이클 디스크 브레이크의 열 및 응력 해석을 통한 형상 설계)

  • 강석현;박시형;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.363-368
    • /
    • 2001
  • Studies on brake system recently are focused on braking performance, especially the consideration on safety of braking system in an extreme situation and reduction of vibration and noise during braking operation. The thermal crack and Judder from the friction between brake disc and pad can bring the threaten of passengers' safety in the end. Braking force comes from the change of kinetic energy to friction energy. Since heat energy is developed from here, the analysis on thermal stress and thermal strain can be the good data when selecting the material of brake pad and designing heat radiation holes on the disc and it will also be the data when designing the thickness of the disc. This paper is intended to show a creative design method by suggesting the thermal analysis data through FEM study and using shape design parameters.

  • PDF

Unsteady State Heat Transfer Analysis of Drum Brake System (드럼 브레이크 시스템의 비정상 열전달 해석)

  • 이계섭;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.172-181
    • /
    • 1999
  • The brakes employed on commercial vehicles must be able to withstand three types of demanding services which are use-emergency stops from high speed, many repeated stops as in a delivery or bus route, and speed control in mountain descents. Two type of friction brakes are in use ; drum breaks and disc brakes. Drum brakes are of the internally expanding type in which two shoes fitted externally with friction material are forced outward against the inside of a rotating drum on the wheel unit. In this case, the Braking power is produced by the friction force between a drum and a lining, and is converted into heat. In this research an unsteady state heat transfer analysis for drum brake system of heavy truck has been performed by ABAQUS/standard code in the case of single-braking and the repeated braking condition. The temperature histories obtained by the finite Element analysis have been compared with the result calculated by the simplified formulation and the result obtained by the experiment of real vehicle conditions.

  • PDF

Development of ABS(Anti-Lock Brake System) Real-Time Simulator (ABS(Anti-Lock Brake System)의 실시간 시뮬레이터 개발)

  • 김중배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.229-241
    • /
    • 1999
  • The paper describes the development of the ABS(Anti-Lock Bracke Sytem) real-time simulator which is composed of the real hydraulic modulator, the brake system, and the control software. This useful too supports the development enviornment of the ABS in great flexible mamer. It offers an efficient and cost-effective method of ABS development which includes the various realistic road conditons, the vehicle characteristics , and the brake characteristics. The performance of the ABS is compared with the normal braking results. Thepresented experimental results are braking on the high friction road, thetransient friction road(high to low , low to high), the split friction road, and the high friction road with steer angle. The paper shows the effectiveness and the safety of the ABS compared with the normal brake system , and the powerful and conventient tool in developing the ABS.

  • PDF

Design of Wedge in the Electro-Mechanical Brakes for Commercial Vehicles to Boost Braking Friction Forces (브레이크 마찰력 증가를 위한 상용차용 전기-기계식 브레이크의 쐐기 설계)

  • Lee, Sang Min;Park, Jeonghun;Nam, Kanghyun;Yoo, Chang-Hee;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.55-59
    • /
    • 2018
  • This paper proposes a new type of electro-mechanical wedge brake for commercial vehicles. The brake operates on a novel mechanism for self-boosting braking friction forces using eccentric shafts, and involves wedges that are inserted between the rampbridge and traverse; this self-boosting mechanism is explained herein. A dynamic analysis using ADAMS was conducted, and the findings are reported. The constraint and contact conditions are explained to verify the precision of the dynamic analysis. The dynamic analysis shows that in the proposed mechanism, the self-boosting effect occurs as desired. However, it is also noted that the system has a limitation in terms of the production of unlimited braking forces that can jam the roller inside the wedges. After demonstrating the self-boosting effect, dynamic analyses are performed for several values of the wedge angles and friction coefficients between the brake pads and disks. Conventionally, a lower wedge angle has been suggested owing to its provision of a larger clamping force for given friction coefficients. However, it is noted that lower wedge angles can lead to a higher probability of occurrence of undesirable high braking forces, which can jam the roller into the wedge; thus, a larger wedge angle is preferable for avoiding the undesirable jamming phenomena. These analysis results are presented and discussed herein.

An Experimental Study on Braking Thermal Damage of Brake Disk Cover (브레이크 디스크 커버의 제동 열손상에 대한 실험적 연구)

  • Ko, Kwang-Ho;Moon, Byung-Koo
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.171-178
    • /
    • 2015
  • The disk cover is installed to protect brake disk and calliper and it's removed right before delivering to customers. The temperature of disk cover was measured driving test vehicles(2000cc, diesel) in this study. The highest temperature measured for the driving test(120km/h-braking(0.3G)-stop-120km/h-braking(0.5G)-stop) was $260{\sim}270^{\circ}C$ in the upper part of the disk cover and the temperature varied considerably around the disk cover. It can be inferred from this temperature distribution around the cover that the major heat transfer from hot disk to cover was through convection. In other words, the hot air generated by braking friction moved up to the upper part of the disk cover. And only the upper area of the disk cover was melted down during this driving test. The thickness of disk cover was increased to 1.0mm from 0.7mm and 1 paper of masking tape was pasted in the upper region of the disk cover. Then the cover endured the heated air formed by braking friction during the driving test.