• Title/Summary/Keyword: Brake specific fuel consumption

Search Result 97, Processing Time 0.024 seconds

A Study on the Performance and Emission Characteristics According to the Coolant Temperature of Combustion Chamber Head of Spark Ignition Engine Fuelled with Kerosene (Coal Oil) (Kerosene (Coal Oil)을 사용한 스파크점화기관의 연소실헤드 온도 변화에 따른 엔진 성능 및 배기 특성에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.92-97
    • /
    • 2017
  • Kerosene (Coal oil) is a particularly attractive fuel because it is widely used to power jet engines of aircraft as jet fuel and some rocket engine. This paper describes the performance and emission characteristics according to the collant temperature of combustion chamber head of spark ignition engine fuelled with kerosene. As a result, the following knowledge is obtained. As the collant temperature of combustion chamber head is decreased, torque, volumetric efficiency and brake specific fuel consumption have been increased. When coolant temperature of combustion chamber lower, THC emission increased but CO and $NO_x$ emission decreased.

A Study on the Characteristics of Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 배기 배출형 특성에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.481-489
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristics of fuel economy combustion and exhaust emissions have been experimentally investigated by a four-cylinder four cycle indirect injection water-cooled and marine diesel engine operating at several loads and speeds. in order to reduce the soot contents in the recirculated exhaust gas to intake system of the engine a novel diesel soot removal system with a cylinder-type scrubber which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured for the experiment system The experiments in this study are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions, The brake specific fuel consumption rate is slightly fluctuated with EGR in the range of experimental conditions, The maximum value of premixed combustion for the rate of heat release is decreased with EGR at engine load 25% and the ignition is slightly delayed with EGR at engine load 100% NOx emissions are markedly decreased with EGR especially at high loads while soot emissions are increased as the EGR rate rises.

  • PDF

A Study on the Fuel Characteristics and Engine Performance of Indolene - Methanol Alternative Fuel (인돌렌-메탄올 대체연료의 연료 특성과 엔진성능에 관한 연구)

  • Lee, Min-Ho;Oh, Yool-Kwon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2004
  • A study of the propeny and performance effect of Indolene - Methanol Plus High Alcolhols (MPHA) has been completed. This study invested the measurement of fuel properties and performance parameters. The fuel properties investigated are distillation characteristics, heating valuer flash point, specific gravity and water tolerance. The performance parameters measured are minimum advance for best torque (MBT) spark timing, power output. The alcohol concentration was varied from 0 to 100 percent by volume in clear Indolene. The measurement of fuel properties indicated that, in general, Indolene - MPHA blends have higher water tolerance, similar specific gravity, similar flash point and different distillation characteristics compared to Indolene - Methanol blends. The performance parameters were measured using a single cylinder spark ignition engine at different compression ratios. The results of the performance measurements indicated that Indolene - MPHA blends have a higher MBT spark advance, similar power output.

  • PDF

Performance Characteristics of CNG Engine at Various Compression Ratios (압축비 변경에 따른 CNG기관의 특성 연구)

  • Kim Jin-young;Ha Jong-yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.145-151
    • /
    • 2005
  • Natural gas is one of clean fuels that can replace petroleum-based fuels, because it has low exhaust emission, comparatively high thermal efficiency and abundant deposits. In this addition, owing to high octane number and wide lean flammability limit, it has a strong point to increase the compression ratio. For this reason, the research is being actively executed to increase the generating power and thermal efficiency of the engine by raising the compression ratio through utilization of high octane number relevant to development of CNG engine. In this study, 0.63L single cylinder diesel engine has been used to alter easily compression ratio. Compression ratio has gotten under control by modifying the thickness of gasket between cylinder head and block without major structural modifications. As the result, as compression ratio has increased, generating power and fuel consumption ratio have been improved. As for emission concentration, as compression ratio has increased, THC concentration has been decreased while exhause concentration of NOx increased. In case compression ratio has excessively increased, brake output decrease and cycle variation have been increased. As the result acquired by analyzing brake output, fuel consumption ratio, cycle variation and exhaust, the engine driving condition has acquired $\varepsilon=13$ as the optimal compression ratio in this study.

Performance and Emissions Characteristics of a Converted Liquefied Petroleum Gas (LPG) Engine with Mixer and Liquid Propane Injection (LPi) System

  • Choi, Gyeung-Ho;Kim, Jin-Ho;Cho, Ung-Lae;Chung, Yon-Jong;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.187-193
    • /
    • 2005
  • In this study, the performance and emission characteristics of a liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system. A compression ratio of 21 for the base diesel engine, was modified to 8, 8.5, 9 and 9.5. The engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficienry, CO, THC and NOx. Experimental results showed that the LPi system generated higher power and lower emissions than the conventional mixer fuel supply method.

A Comparative Study on Diesel Engine Performance with Higher Alcohol-diesel Blends (고탄소알코올/경유 혼합유를 이용한 디젤엔진 성능 특성 비교 )

  • JAESUNG KWON;JEONGHYEON YANG;BEOMSOO KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.767-772
    • /
    • 2023
  • In this study, combustion experiments were conducted at various engine speeds under full-load conditions using a single-cylinder diesel engine by blending butanol, pentanol, and octanol with diesel at a volume ratio of 10%. Experimental results revealed that higher alcohol-diesel blends resulted in lower brake torque and brake power than pure diesel due to the lower calorific value and the cooling effect during evaporation. An evident improvement in the brake thermal efficiency of the blended fuels was observed at engine speeds below 2,000 rpm, with the butanol blend exhibiting the highest thermal efficiency overall. Furthermore, the brake-specific fuel consumption of the higher alcohol-diesel blends was lower than that of pure diesel at speeds below 2,200 rpm. When using blended fuels, the exhaust gas temperature decreased under lean mixture conditions due to heat loss to the air and the cooling effect from fuel evaporation.

Combustion Characteristics of a Direct Injection Agricultural Diesel Engine with Rapeseed Oil (유채유를 연료로 한 직접분사식 농용 디젤기관의 연소특성)

  • Choi, S.H.;Byeon, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.135-139
    • /
    • 2009
  • Harmful exhaust emissions of diesel engines are recognized as main causes of air pollution in these days. But, the direct injection diesel engine is widely used for sake of minimization on energy consumption. Because biodiesel fuel is a renewable and alternative fuel for a diesel engine, its usability is expanded. To investigate the effect of biodiesel fuel(extracted from rapeseed oil) on the characteristics of performance and exhaust emissions in an agricultural diesel engine, the biodiesel fuel derived from rapeseed oil was applied in this study. Smoke emission of esterified rapeseed oil was reduced remarkably by approximately 44.5% at 1500 rpm, full load in comparison with the commercial diesel fuel. The power, torque and brake specific energy consumption of the diesel engine showed very slight differences. It was concluded that esterified rapeseed oil could be utilized effectively as an alternative and renewable fuel for agricultural direct injection diesel engines.

A Commercial Development of Ultrasonic Fuel Feeding System for Low Pollution and High Performance in Diesel Automobile (디젤자동차의 저공해(低公害), 고출력용(高出力用) 초음파(超音波) 연료공급장치(燃料供給裝置)의 상용화(商用化) 개발(開發))

  • Jung, M.J.;Cho, K.S.;Lee, G.Y.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.122-129
    • /
    • 1995
  • This is an experimental study on the chassis dynamometer and high way road testing during a severe winter and summer season. Results obtained to compare with the ultrasonic fuel feeding system and conventional fuel system in diesel automobile engine. The results were as followers in case of the ultrasonic fuel feeding system. 1. In chassis dynamometer testing during given vehicle speeds, output were increased from 4.6 to 11.43%, brake specific fuel consumption were increased from 6 to 19%, smoke were decreased from 16.7 to 50%. 2. The running fuel consumption ratio in high way road test were decreased by 15.3% at a severe summer and 20.2% at a severe winter.

  • PDF

Expansion of Operating Range and Reduction of BSFC in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 연료소비율 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3013-3018
    • /
    • 2008
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range, brake specific fuel consumption (BSFC) and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range. The result showed that operating range with boost was expanded up to 41.9% compared to naturally aspirated LTC condition due to increased mixing intensity. The boosted LTC engine showed low BSFC value and dramatically reduced soot emission under all operating range compared with high speed direct injection (HSDI) mode. Finally, this paper presents the boosted LTC map of emission and the strategy of improved engine operating range.

  • PDF