• Title/Summary/Keyword: Brake pressure calculation

Search Result 3, Processing Time 0.017 seconds

Viscosity of Binary Gas Mixture from the Calculation by Using the Brake Theory of Viscosity (Brake 점성이론으로 계산한 이성분기체의 점성)

  • Kim, Won-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.243-248
    • /
    • 2004
  • Brake theory of viscosity, which can sucessfully calculate the viscosity of real gases, dense gases and liquids, is extended to the binary gas mixture. Adjustable parameters are not involved, but the calculated results are good agreements with the experimental values at high pressure as well as low pressure. Corresponding state equation for viscosity can be obtained by using the Redlich-Kwong equation, so that we hope this equation may be useful for the supercritical fluid in engineering applications at high pressure around the critcal point.

The road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability (자율차량 안정성을 위한 도로 거칠기 기반 제동압력 계산 시스템)

  • Son, Su-Rak;Lee, Byung-Kwan;Sim, Son-Kweon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.323-330
    • /
    • 2020
  • This paper proposes the road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability. The system consists of an image normalization module that processes the front image of a vehicle to fit the input of the random forest, a Random Forest based Road Roughness Classification Module that distinguish the roughness of the road on which the vehicle is travelling by using the weather information and the front image of a vehicle as an input, and a brake pressure control module that modifies a friction coefficient applied to the vehicle according to the road roughness and determines the braking strength to maintain optimal driving according to a vehicle ahead. To verify the efficiency of the BPCS experiment was conducted with a random forest model. The result of the experiment shows that the accuracy of the random forest model was about 2% higher than that of the SVM, and that 7 features should be bagged to make an accurate random forest model. Therefore, the BPCS satisfies both real-time and accuracy in situations where the vehicle needs to brake.

A Study on Dynamic Characteristics of Hydraulic Motor Brake System with Counter Balance Valve (카운터 밸런스 밸브를 내장한 유압 모터 브레이크 시스템의 동특성)

  • Yun, So-Nam;Lee, Ill-Yeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.214-219
    • /
    • 1993
  • Counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. These problems may hurt system safety and driver's conformability. Nevertheless, studies on dynamic characteristics of hydraulic system including counter balance valve are very rare, so further accumulation of research results are required. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. The equations obtained in the preceding process include some parameters that must be got experimentally. Flow coefficients of valve and choke are the most significant ones among the parameters. So these parameters are obtained experimentally in this study, and experimental equations obtained from the experimental data were used for numerical calculation. The equations were analysed by numerical integration using Runge-Kutta method, because the equations contain various nonlinear terms. From the numerical analysis, it was verified that the dynamic response of counter balance valve and pressure variation at each elements can be estimated very easily. So the analysing method developed in this study enabled very easy estimating the relation between the performances of counter balance valve and various physical parameters related to the valve. Conclusively, it is said that the results obtained in this study can be used very usefully to develop a new type counter balance valve or to apply the valve to actual hydraulic system for various industrial equipments.

  • PDF