• Title/Summary/Keyword: Brake load

Search Result 213, Processing Time 0.022 seconds

Analysis of Engine Operation Condition by Using Coastdown Test under Gear Engaged Condition (기어 물림 상태의 타행 주행 저항을 이용한 엔진 운전 조건의 분석)

  • Shim, Beom-Joo;Park, Kyoung-Suk;Park, Jun-Su;Min, Byeong-Du
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.61-66
    • /
    • 2012
  • Conventional method to transform vehicle driving condition to engine operation mode is to use vehicle road load under neutral gear and mechanical efficiency of drivetrain. But this method requires additional measurement of efficiency of drivetrain on a test rig. And this measurement is normally done at fixed speed and thus estimated accuracy of engine operation mode is not considered to be high enough. This study suggests new method to calculate engine operation mode for prescribed driving mode such as NEDC using vehicle coastdown test under gear engaged condition without measurement of mechanical efficiency of drivetrain. Coastdown test was done under neutral and gear engaged condition for comparison and also trial to extract mechanical loss of drivetrain was carried out. Calculated engine torque by conventional and newly suggested method was compared with actually measured torque of a vehicle on a chassis dynamometer during NEDC. Newly suggested method showed slightly higher accuracy of accumulated brake work during NEDC.

Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation (EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성)

  • 조윤호;구준모;장진영;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.

A Study on a Robot for Moving a Double-parked Car (이중 주차된 차량을 이동하기 위한 로봇에 관한 연구)

  • Kim, Min-Chan;Sung, Young Whee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.233-244
    • /
    • 2020
  • A double-parked car is the one that is parked in a crowded parking lot with its transmission gear in neutral position and its auxiliary brake released. A double-parked car can be moved by pushing it but doing so is very difficult and dangerous. In a previous study, we proposed an omni-directional mobile robot for moving a double parked car. In that study we adopted Mecanum wheels. Even though the proposed robot showed successful results, it has some drawbacks such as dependency on a load condition, complexity in control, inefficiency in power use, etc. To overcome those drawbacks, we propose a differential drive robot with ordinary two tire wheels. The proposed robot consists of two parts, one is a wheel part and the other is a body part. By selectively connecting or disconnecting those two parts with the aid of an electric brake, the proposed robot is able to have omni-directional mobility.

A Study on Emission Charncteristics and EGR Application of Blending Fuels with Biodiesel Fuel and Oxygenate Component in a D.I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤유와 함산소성분 혼합연료 적용시 배기배출물 특성 및 EGR의 적용 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.43-48
    • /
    • 2008
  • The exhaust emissions of diesel engine are recognized as a major cause influencing environment strongly. In this study, the possibility of biodiesel fuel and oxygenated fuel(dimethoxy methane; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel(biodiesel fuel 90vol-%+DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load, in comparison with the diesel fuel. But, power, torque and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(95 vol-%) and DMM(5 vol-%) blended fuel and cooled EGR method(15%).

Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material (항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

A Study on Fatigue Assessment of the Crane Post due to Vibration during the Emergency Stop (충격하중에 의한 Jib Crane Post의 피로 수명 평가)

  • Kim, Kuk-Su;Kim, Nho-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.633-637
    • /
    • 2011
  • The tall and slender main crane is generally installed on the upper deck to load and unload the equipment or something heavy in the drilling rig or the ship. So the natural frequency of the crane equipment is very low, therefore, there is some possibility of excessive vibration at the emergency state due to sudden stop during the crane operation. This study describes a fatigue assessment due to heavy vibration during brake test of sudden stop because it is necessary the safety of crane is estimated against the heavy vibration. In order to find out the applied force, the vibration measurement and analysis have been performed.

  • PDF

Multi-stage Cold Forging Process Design and Backward Extrusion Characteristics Evaluation of Serration Gear for Electronic Parking Brake (전자식 파킹 브레이크용 세레이션 기어의 냉간다단단조 공정 설계 및 후방 압출특성에 관한 평가)

  • Seo, Ju-Han;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2022
  • Reducing production costs through net-shaped cold forging is an important aspect in the automobile industry. In this study, we intend to produce a net-shaped electronic parking brake (EPB) serration gear for automobiles, using multi-stage cold forging. These serrations are then assembled to the reduction gear of an EPB actuator. The forging process of the serrations and the cold forging design were verified through finite element analysis (FEA) in order to evaluate metal flow. The forging machine was selected by checking the load using FEA. Based on the FEA results, molds were designed, and parts were made using multi-stage cold forging to produce a net-shaped serration gear.

Structure Analysis of Secondary Bogie Frame for Electrical Multiple Unit (전동차 부수대차의 구조해석 연구)

  • Yoon S.C.;Kwon S.T.;Kim W.K.;Chang S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1402-1405
    • /
    • 2005
  • This paper describes the result of structure analysis of secondary bogie frame. The purpose of the analysis is to evaluate an safety which secondary bogie frame shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Secondary bogie system consist of bogie frame, suspensions, wheel-sets, and brake system. Among these component, the bogie frame is most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the FEM analysis. The analysis results have been very safety and stable for design load conditions.

  • PDF

Design of Energy Absorption Device Using the Axial Crushing Behavior of Truncated Cone Type Cylinder (콘 형상 실린더의 축 방향 압축변형을 이용한 충격흡수장치 설계)

  • 김지철;이학렬;김일수;심우전;박동화
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.259-267
    • /
    • 2003
  • A brake device for the high-speed impacting object is designed using an axial crushing of thin-walled metal cylinder. Thickness of the cylinder is increased smoothly from the impacting end to the fixed end, resulting in the truncated cone shape. Truncated cone shape minimizes the imperfection-sensitivity of the structure and ensures that plastic hinges are formed sequentially from impacting end. This prevents the undesirable sudden rise in the first peak-crushing load. Several specimens with different conic angles, mean thickness of the wall, and materials were designed and quasi-static compression tests were performed on them. Results indicate that adoption of appropriate conic angle prevents simultaneous wrinkles generation and sudden rise of crushing load and that appropriate conic angle differs in each case, depending on the geometry and material property of the cylinder. Finite element analysis was performed for static compression of the cylinder and its accuracy was checked for the future application.

Cycle Reduction Simulation for Turning Process (선삭 가공 사이클 단축 시뮬레이션)

  • Kim, Sun-Ho;Cho, Hang-Deuk;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Productivity of machining using machine tools is affected by cutting conditions such as cutting speed, feedrate and depth. However, undesirable conditions that lengthen the machining cycle and shorten the tool life occur frequently because determination of cutting condition is known to depend on human experience. This paper presents a method of cycle reduction by removing undesirable conditions. For cycle reduction, maximum cutting load is determined using commercial FEM simulation code. The feedrate in the NC program is altered based on a predetermined cutting load value. To make a decision on the proposed effectiveness, a simulation is performed for the brake hub parts of an automobile. From the evaluation, it was found that the cycle reduction was under 15%.