• Title/Summary/Keyword: Brake disk

Search Result 220, Processing Time 0.045 seconds

Study of the Tribological Characteristics Based on the Hardness of the Brake Disk between the Sintered Metallic Friction Material and the Heat-resisting Steel Disks (디스크 경도에 따른 소결마찰재와 내열강 디스크의 마찰·마모 특성)

  • Na, Sun Joo;Park, Hyoung Chul;Kim, Sang Ho
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.42-49
    • /
    • 2015
  • Because of the growing need for high-speed transport options such as trains and aircraft, there is increasing demand for technology related to high-speed trains. Among them, braking systems are important in high-speed trains in terms of reliability. Especially, the disk brake system, in use in most high-speed trains, transforms kinetic energy into thermal energy and noise. Therefore, the material properties of both the friction materials and disks are expected to influence the tribological characteristics. In this paper, the tribological characteristics depend on the hardness of the brake disks between the Cu-based sintered metallic friction material and the heat-treated heat-resisting steel disks. A lab-scale dynamometer used to perform braking tests at a variety of braking speeds using dry conditions. The test results revealed that the hardness of the disks affects the friction coefficients, friction stabilities, and wear rates. Thus, the brake system using the heat-resisting steel disk requires proper heat-treatment. These differences are considered to be caused by the change in tribological mechanisms and the generation of an oxide layer on the friction surfaces. The oxide layers on the friction surfaces are confirmed to Fe2O3 by x-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) analysis.

System Mode and Sensitivity Analysis for Brake Judder Reduction (브레이크 저더 개선을 위한 시스템 모드분석 및 민감도해석)

  • Hwang In-Jin;Park Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.142-153
    • /
    • 2005
  • The brake judder is a phenomenon that the steering wheel is abnormally vibrating when the car is braked at a high speed. It is classified by the cold and the hot judder. The former is generated due to the initial uneven disk surface and the latter is resulted from the uneven heat spots on disc surface by repeatedly braking. There are two ways to reduce the judder. One is to control vibration by modification of the disk shapes and pad ingredients. The other is to improve modal characteristics of the suspension system. The latter approach is used in this research. In this paper, the real vehicle test and computer simulation are considered to systematically understand the judder phenomenon of the vehicle. The Macpherson strut suspension is employed. Especially, the judder sensitivity is calculated based on design sensitivity analysis. A bush stiffness was reworked and braking test was done to verify the sensitivity result. The judder reduction by the mode control was verified.

A Study on the Analysis of Squeal Noise for Brake Design (저소음 브레이크 설계를 위한 스퀼 소음 해석기법 연구)

  • Kim, Chan-Jung;Lee, Dong-Won;Lee, Bong-Hyun;Na, Byung-Chul;Kim, Hyun-Chul;Kwon, Seong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.830-839
    • /
    • 2006
  • The phenomenon of squeal noise in the disk brake system has been, and still is, a. problem for the automotive industry. Extensive research has been carried out in an attempt to understand the mechanism that causes squeal noise and In developing design procedures to reduce squeal noise to make vehicles more comfortable. In this paper, the study on the analysis of squeal noise is performed by using computer aided engineering to design the anti-squeal noise disk brake system. The first part describes the chassis dynamometer and the testing procedure, and second part explains the finite element model and the complex eigenvalue analysis. Finally, it is shown that the proposed squeal noise analysis could be useful to investigate the design parameters that affect the squeal noise characteristics.

Friction and Wear Characteristics and Reliability Estimation of Aircraft Brake System (항공기 제동장치의 마찰.마멸 특성 및 신뢰도 예측)

  • 장동관;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.127-133
    • /
    • 2003
  • Pin-on-disk and hardness tests using mechanical components of M-20J aircraft braking system were performed to identify the friction and wear characteristics. The intention of this work was also to analyze a 5-year term maintenance record of an M-20J aircraft. used for flight training at Hankook Aviation University, and to determine the reliability of the brake system of an M-20J aircraft. The mean wear coefficients of the lining sliding against the brake disk were compared between the test and reliability estimation to obtain a predictive wear model.

A Study on Thermal Behavior and Stress Characteristics of Discs under Braking Conditions for Automobiles (자동차 브레이크 제동시 디스크의 열적거동 및 응력 특성에 관한 연구)

  • Baek, Il-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.246-251
    • /
    • 2012
  • Disc brakes and brake linings are part of the braking system in automobiles; this system works due to the braking power between the disc and pad. Vehicle braking systems have complex environments due to the geometry of the disk and pad, the material properties, the braking conditions, etc. Braking energy is converted into thermal energy during the braking process, due to the frictional heat between the disc brake and pad. This heat is changed to a heat flux, which affects the thermal stress of the disc. The purpose of this study was to use the fluid dynamics software ANSYS CFX to investigate the inner flow characteristics of the air and the heat transfer of the disc, and to analyze the effects on the thermal stress of the disc brake.

The Brake Performance of Sintered Friction Materials Developed for High Speed Trains (고속전철용 소결 복합재의 마찰 특성평가)

  • Chung, So-La;Hong, Ui-Seok;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.266-271
    • /
    • 2007
  • The brake performance of sintered friction materials for the high speed train was studied. In this study, newly developed sintered materials based on copper were compared with the commercial products for high speed trains. They were tested on a 1/5 scale dynamometer using low carbon steel disks. Effectiveness, fade, and recovery tests were carried out to examine friction performance and the change of disk thickness variation (DTV) during brake applications and noise propensity were also evaluated. Results showed that the two sintered friction materials exhibit similar friction coefficients and braking performance, whereas the newly developed friction material was superior in terms of DTV generation and noise propensity to the commercial friction material. The improvement of the newly developed friction material was attributed to the high graphite content which reduced the stick-slip phenomena and prevented uneven disk wear by producing friction films on the counter disk.

Thermo-mechanical Contact Analysis on Disk Brakes by Using Simplex Algorithm

  • Cho, C.;Sun, Chan-Woong;Kim, Ju-Yong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.399-400
    • /
    • 2002
  • A numerical procedure for analyzing thermo-elastic contact applied to an automotive disk brake and calculating subsurface stress distribution has been developed. The proposed procedure takes the advantage of the simplex algorithm to save computing time. Flamant's solution and Boussinesq's solution are adopted as Green function in analysis. Comparing the numerical results with the exact solutions has proved the validity of this procedure.

  • PDF

Durability Study of Subway Brake Disc and Wheel-type Brake (지하철의 브레이크 디스크와 차륜방식브레이크의 내구성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.22-28
    • /
    • 2019
  • In this study, as part of the subway braking system, the structural analysis was performed with the fatigue analysis by comparing subway brake disc and wheel-type brake. When structural analysis was performed, it was possible to verify that the wheel-type brake were higher than the brake discs in case of total deformation. As the same loading conditions were given to the subway brake disc and wheel-type brake, wheel-type brakes was shown to have more deformation than brake disk but lower damage than the subway brake disc. Comparing with each fatigue loading condition, the maximum fatigue life for 'Sample history' is found to be about 60 times longer than for 'SAE bracket history'.

Tribological Characteristics for High Perfomance Metallic Friction Materials (고성능 금속마찰재의 트라이볼로지적 특성)

  • 김석삼;김재호;안효준
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Friction and wear test for two kinds of Cu-based sintered metallic friction material against cast iron disk was carried out by plate-on-disk type friction and wear tester to investigate the friction and wear characteristics of brake system in severe condition. In this experimental study, the counter specimen was cast iron which is being used generally in brakes of heavy duty equipments. Test friction materials were A type which was manufactured by foreign company and B type by domestic company. Friction coefficient and wear volume were measured and compared with each other. The experiment was performed under room temperature. The worn surface of cast iron disk and friction material were observed by scanning electron microscope. The temperature of surface of disk was measured continuously by the non-contacting thermometer. It was found that A type friction material had stable friction coefficient over the wide range of sliding condition, but B type friction material had unstable friction coefficient and lower value of 0.2 under the severe sliding condition.