• Title/Summary/Keyword: Brake capability

Search Result 14, Processing Time 0.016 seconds

A Study on the Technical Regulation of Brake System for Electrical Multiple Unit Safety (전동차 안전을 위한 제동장치의 기술기준에 관한 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1332-1334
    • /
    • 2003
  • Safety of breaking facility is very important in subway safety, especially in case of subway that many people used, breaking capability is connected directly with safety and capability of vehicle. Recently, direction of subway technical development is established as passenger's convenience and agreeableness. However, we are known importance of safety in subway through Dae-gu subway incendiary case. Subway accident not happen only fire, vehicle collisions or passenger's fall to the track can happen. In this case, safety standard of breaking facilities is very important. so this paper define safety of breaking facilities and take proper that standard.

  • PDF

Development of Advanced Emergency Braking Algorithm for the enhanced longitudinal safety (종방향 안전도 향상을 위한 자동비상제동 알고리즘 개발)

  • Lee, Taeyoung;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents a development of the Advanced Emergency Braking (AEB) Algorithm for passenger vehicles. The AEB is the system to slow the vehicle and mitigate the severity of an impact when a rear end collision probability is increased. To mitigate a rear end collision, the AEB comprises of a millimeter wave radar sensor, CCD camera and vehicle parameters of which are processed to judge the likelihood of a collision occurring. The main controller of the AEB algorithm is composed of the two control stage: upper and lower level controller. By using the collected obstacle information, the upper level controller of the main controller decides the control mode based not only on parametric division, but also on physical collision capability. The lower level controller determines warning level and braking level to maintain the longitudinal safety. To decide the braking level, Last Ponit To Brake and Steer (LPTB/LPTS) are compared with current driving statues. To demonstrate the control performance of the proposed AEBS algorithm's, closed-loop simulation of the AEBS was conducted by using the Matlab simlink and CarSim software.

HWILS Implementation of TCS Control System Based on Throttle Adjustment Approach (스로틀 조절 방식에 기초한 TCS 슬립 제어 시스템의 HWILS 구현)

  • 송재복;홍동우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 1998
  • Traction control systems(TCS) improve vehicle acceleration performance and stability, particularly on slippery roads through engine torque and/or brake torque control. This research mainly deals with the engine control algorithm based on adjustment of the engine throttle valve opening. Hardware-in-the-loop simulation(HWILS) is carried out where the actual hardware is used for the engine/automatic transmission and TCS controller, while various vehicle dynamics are simulated on real-time basis. Also, use of the dynamometer is made in order to implement the tractive force that a road applies to the tire. Although some restrictions are imposed mainly due to the capability of the synamometer, simplified HWILS results show that the slip control algorithm can improve the vehicle acceleration performance for low-friction roads.

  • PDF

Development of engine control based TCS slip control algorithm using engine map (엔진맵에 기초한 엔진제어 TCS 슬립제어 알고리듬의 개발)

  • Song, Jae-Bok;Kim, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.428-436
    • /
    • 1998
  • A TCS slip control system improves acceleration capability and steerability on slippery roads through engine torgue and/or brake torque control. This research mainly deals with the engine control algorithm via the adjustment of the engine throttle angle. The following new control strategy is proposed and investigated ; the TCS slip controller whose input is the difference between the desired driving wheel speed corresponding to the optimum slip ratio and the actual speed yields the target engine torque and then estimates the throttle angle based on the engine performance curve. Various simulation and hardware-in-the-loop simulation have been carried out. The results show the proposed strategy may compensate for the inherent nonlinearity between variation of the throttle angle and variation of the engine torque and produce better performance than the previous strategies without the engine map, especially in the high speed region.