• Title/Summary/Keyword: Brake Specific Fuel Consumption

Search Result 97, Processing Time 0.02 seconds

An Experimental Study on Simultaneous Reduction of Smoke and NOx with Biodiesel Fuel in a CRDI Type Diesel Engine (CRDI 방식 디젤기관에서 바이오디젤유 적용시 매연과 NOx의 동시저감에 관한 실험적 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.35-40
    • /
    • 2007
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong, In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated common rail diesel engine. The smoke emission of biodiesel fuel 5vol-%(min. content) was reduced in comparison with diesel fuel, that is, it was reduced approximately 60% at 4000rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emission of biodiesel fuel was increased compared with a commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel(5vol-%) and cooled EGR method($5{\sim}10%$) in a common rail diesel engine.

A Simultaneous Reduction of Smoke and $NO_X$ with Biodiesel Fuel in a D. I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤유 적용시 매연과 $NO_X$의 동시저감)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.65-71
    • /
    • 2005
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated D.I. diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in com parison with diesel fuel, that is, it was reduced approximately 48.5% at 2500rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, $NO_X$ emission of biodiesel fuel was increased com pared with commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of $NO_X$ emission has been investigated. It was found that simultaneous reduction of smoke and $NO_X$ was achieved with biodiesel fuel(20vol-%) and cooled EGR method($5{\sim}15%$).

Improvement of Emission Performance in a 3.3 Liter DI Diesel Engine by Using Dimethyl Ether Fuel (디메틸에테르 연료를 사용하는 3.3리터 디젤기관의 배기성능 개선)

  • Pyo, Young-Dug;Lee, Young-Jae;Kim, Mun-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.178-185
    • /
    • 2007
  • A study is improvement of power and emission in a inline-pump Dr diesel engine by using Dimethyl ether Fuel. Dimethyl ether (DME) is an oxygenated fuel with a cetane number higher than that of diesel oil. It meets the ULEV emission regulation and reduces the smoke to almost zero when used in a diesel engine. But NOx emission is almost same and CO, THC emissions are lower than that of diesel engine. The emissions aren't satisfied the stronger emission regulation in the further. Generally DOC (Diesel Oxidation Catalyst) is used to reduce CO & THC emissions and EGR (Exhaust Gas Recirculation) system is used to reduce NOx emission. Test results showed that the torque and the power with DME were almost same as those of pure diesel oil, but the brake thermal efficiency increased a little. also the BSEC (Brake Specific Energy Consumption) with DME was similar that of diesel. The test results showed that the DOC was the vary effective method to reduce the CO emission in case of Dimethyl Ether Fuel in diesel engine. But, THC emission is showed a little reduction rates. Also EGR system was the very effective method to reduce the NOx emission in case of Dimethyl Ether Fuel in diesel engine.

A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port (흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

The Characteristics of Emission on Simultaneous Application with Biodiesel, Oxygenated Fuel(EGBE) and EGR in a DI Diesel Engine (DI 디젤기관에서 바이오디젤유와 함산소연료(EGBE) 동시적용 및 EGR에 의한 배기배출특성)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.143-148
    • /
    • 2010
  • In this study, the potential possibility of biodiesel fuel(BDF) and oxygenated fuel(ethylene glycolvmono-n-butyl ether; EGBE) was investigated as an effective method of decreasing the smoke emission. The smoke emission of blending fuel (BDF and EGBE 0~20 vol-%) was reduced in comparison with diesel fuel and it was reduced approximately 64% at 2000 rpm, full load in the 20% of blending rate. But torque and brake specific energy consumption( BSEC) didn't have no large differences. Also, the effects of exhaust gas recirculation(EGR) for the reduction of NOx emission has been investigated. Consequently, It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(90 vol-%) and EGBE(10 vol-%) blended fuel and cooled EGR method(5~10%).

A Study on Optimal Combustion Conditions with a Design and Manufacture of the Long-Stroke Slow Speed 4 Cycle Diesel Engine (장-행정 저속 4 사이클 디젤기관의 제작 및 최적 연소조건에 관한 연구)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.551-558
    • /
    • 2004
  • Recently, fuel prices have been continually raised in diesel engine. Such a change in the fuel price influences enormously the development trend of marine diesel engines for slow speed, In other words, the focus was shifted from large diameter and high speed to low fuel consumption. Accordingly, more efforts are being made for engine manufacturing and development to develop highly efficient engines. In this study. a single cylinder 4 stroke cycle DI slow speed diesel engine was designed and manufactured, a 4 stroke cycle was configured and basic performances were evaluated. The results are as follows. The optimal fuel injection timing had the lowest value when specific fuel consumption was in BTDC 8~$10^{\circ}$, a little more delayed compared to high speed diesel engines. Cycle variation of engines showed about 5% difference at full loads. This is a significantly small value compared to the cycle variation in which stable operation is possible, showing the high stability of engine operation is good. The torque and brake thermal efficiency of engine increased with an increase of engine 250-450 rpm. but fuel consumption ratio increased from the 450 rpm zone and thermal efficiency abruptly decreased. Mechanical efficiency was maximally 70% at a 400 rpm that was lower than normal engines according to the increase of mechanical frictional loss for cross head part. The purpose of this study was to get more practical engines by comparing the above results with those of slow speed 2 stroke cycle diesel engines.

The Application of Oxygenated Component(Butyl Ether) and EGR in a DI Diesel Engine (직접분사식 디젤기관에서 함산소성분(Butyl Ether) 및 EGR의 적용)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-139
    • /
    • 2008
  • This research investigated variations of the engine performance and the exhaust emission characteristic of a direct injection diesel engine by fueling a commercial diesel fuel, which was blended with the di-ether group (butyl-ether: BE). The smoke emission reduced to 26% from the diesel engine with the blending fuel (diesel fuel 80 vol-% + BE 20 vol-%)at the full engine load of 2500 rpm compared to it with the diesel fuel only. The power, torque and brake specific energy consumption of the diesel engine showed very slight differences. The NOx emission from the diesel engine, however, with the blended fuel was higher than with the commercial diesel fuel only. By applying EGR method, as a counter plan of the NOx reduction, this research obtained reductions of the smoke and NOx emission at the same time from the diesel engine with the BE blended diesel fuel.

FUEL PROPERTIES AND EMISSIONS CHARACTERISTICS OF ETHANOL-DIESEL BLEND ON SMALL DIESEL ENGINE

  • Xu, B.Y.;Qi, Y.L.;Zhang, W.B.;Cai, S.L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.

A Study on Characteristics for Emission Characteristics and Durability with Biodiesel Fuel(20%) in a Commercial Common Rail Type Diesel Engine (상용 커먼레일 디젤기관에서 바이오디젤유(20%) 적용시 내구특성 및 배기배출물 특성 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with 20% biodiesel fuel(BDF 20) in excess of 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis, Also, BSEC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about 11%, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.