• Title/Summary/Keyword: Brake Control

Search Result 470, Processing Time 0.023 seconds

Position Control of a Moving Table Using ER Brake and ER Clutch (ER 브레이크와 클러치를 이용한 이송 테이블의 위치 제어)

  • 김승래;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.225-229
    • /
    • 1996
  • This paper presents an active position control of a moving table utilizing ER(electro-rheological) brake and ER clutch. A transformer oil-based ER fluid is composed and its Bingham properties are evaluated with respect to electric fields. The dynamics of the actuators : ER brake and ER clutch, are identified through experiments, and subsequently the governing equation of motion of the moving table system is formulated from the governing equation, a sliding mode controller is designed to achieve an accurate position control. Both simulation and experimental results and presented in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

An Experimental Study of an Anti-lock Brake System (미끄럼 방지 제동시스템에 대한 실험적 고찰)

  • Kang, Sung-Hwang;Kim, Jae-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.17-24
    • /
    • 2006
  • Anti-lock brake system(ABS) are designed to prevent wheel lock on all wheels of the vehicle by sensing wheel angular speed, processing the speed sensor signals in suitable digital electronic control circuits and comanding electrohydraulic actuators to control brake pressure. This study considers a control of ABS using wheel circumferential acceleration thresholds which avoids dangerous wheel locking due to excessive brake pressure during the vehicle braking and discusses the 3-channels, 3-sensors ABS system that employs "independent control" technique for the front wheels and "select low" technique for the rear wheels. The validities of the ABS such as vehicle stability, steerability and stopping distance during braking are assured through the vehicle tests on uniform asphalt straight roads.

A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System (Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.

Conceptual Design of Braking System in High-Speed Train (고속전철 제동장천 개념설계에 관한 연구)

  • Kang, Do-Hyun;Kim, Yong-Joo;Kwak, Soo-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.342-345
    • /
    • 1997
  • To achieve adequate brake performance in high-speed trains the brake system should : ${\bullet}$ offer high reliability and high availability, ${\bullet}$ permit deceleration of the train with as little wear as possible, and ${\bullet}$ display good control characteristics with, if possible, infinitely variable control of the braking effort. For these reasons, high-speed train is to be equipped with three different and largely independent brake system : ${\bullet}$ a regenerative brake with regenerative feedback in the driven cars, ${\bullet}$ a linear eddy-current brake in the nondriven cars and ${\bullet}$ a pneumatic disc brake in all cars. This paper describes the conceptual design of braking system for Korea High Speed Train with the maximum speed of 350km/h

  • PDF

Pedaling Characteristics of Cycle Ergometer Using the MR Rotary Brake (MR 회전형 브레이크를 적용한 자전거 에르고미터의 주행 특성)

  • Yoon, Y.I.;Kwon, T.K.;Kim, D.W.;Kim, J.J.;Kim, N.G.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1669-1673
    • /
    • 2008
  • A new cycle ergometer using a Magneto-Rheological (MR) rotary brake system has been developed for rehabilitation of hemiplegia patients to reduce uneven pedaling characteristics. For this purpose, a control method to adjust the resistance of the MR rotary brake in real time based on the magnitude of the muscular force exerted by the subject has been devised so that the mechanical resistance to the pedaling can be minimized when the affected leg was engaged for pedaling. A series of experiments were carried out with and without the engagement of this real-time control mode of MR rotary brake at different pedaling rate to find out the effect of the real-time control mode. The characteristics of the pedaling for these specific conditions were analyzed based on the variations in angular velocities of the pedal unit. The results showed that the variations in the angular velocities were decreased by 42.9% with the control mode. The asymmetry of pedaling between dominant and non-dominant leg was 19.63% in non-control mode and 1.97% in the control mode. The characteristics of electromyography(EMG) in the lower limbs were also measured. The observation showed that Integrated EMG(IEMG) reduced with the control mode. Therefore, the new bicycle system using MR brake with the real time control of mechanical resistance was found to be effective in recovering the normal pedaling pattern by reducing unbalanced pedaling characteristics caused by disparity of muscular strength between affected and unaffected leg.

Modeling and Controller Design of the Electronic Wedge Brake (Electronic Wedge Brake의 모델링 및 제어기 설계)

  • Han, Kwang-Jin;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.112-118
    • /
    • 2012
  • The electronic wedge brake is one of the brake-by-wire systems with a self-energizing effect. The electronic wedge brake has faster response than the conventional hydraulic brake and requires only about one-tenth the power to operate. However, the electronic wedge brake cannot be implemented unless the self-energizing effect is reliably controlled. The self-energizing mechanisms may result in unintentional lock up and are very sensitive to environment and parametric variations of the friction coefficient. In this study, the electronic wedge brake is modeled into dynamic equations, and a sliding mode controller is designed based on the model. The performance of the proposed controller is verified in simulations.

Evaluation Technology for the Improvement of Brake Performance and Friction Coefficient of Tread Brake Shoe (답면 브레이크 슈의 마찰계수와 제동성능향상을 위한 평가기술)

  • Choi Kyung-Jin;Lee Dong-Hyung;Lee hisung;Song Mun-Suk;Shin You-Jung
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.377-382
    • /
    • 2003
  • In tread braking of freight cars, braking force is produced by the friction between the wheel and the braking shoe. Friction coefficients such as the brake power, weight variation and brake shoe types should be sensitively treated as the design parameters. The conditions of the car, empty and weighted, should also be taken into consideration in brake force design and the control of brake force has some limitations in terms of the brake system design so that the brake materials selection should be considered as important measures to solve that difficulties. Friction characteristics of brake materials should remain within the range of maximum and minimum value and the friction performance should remain stable regardless of braking time and temperature. This study presented an experimental evaluation method to secure optimum braking performance by keeping safe braking effect and braking distance by the friction coefficient of the brake shoe of the freight cars.

  • PDF

Active Handling Control of the Differential Brake System Using Fuzzy Controller (퍼지제어기를 이용한 차동브레이크 시스템의 능동 조향제어)

  • 윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.82-91
    • /
    • 2003
  • Vehicle dynamics control (VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC, In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. An 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since fuzzy logic can consider the nonlinear effect of vehicle modeling, fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

High Speed Control of a Multi-pole Brake Motor Under a Long Current Control Period (다극 브레이크 모터의 긴 전류 제어주기 고속영역 제어)

  • Kim, Dokun;Park, Hongjoo;Park, Kyusung;Kim, Seonhyeong;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In hybrid or electric vehicles, the hydraulic brake system must be controlled cooperatively with the traction motor for regenerative braking. Recently, a motor driven brake system with a PMSM (Permanent Magnet Synchronous Motor) has replaced conventional vacuum boosters to increase regenerative power. Unlike industry motor controls, additional source codes such as functional safety are essential in automotive applications to meet ISO26262 standards. Therefore, the control logic execution time increases, which also causes an extension of the motor current control period. The increased current control period makes precise motor current control challenging inhigh speed ranges where the motor is driven by high frequency. In this paper, a PWM update strategy and a time delay compensation method are suggested to improve current control and system performance. The proposed methods are experimentally verified.

Maneuver Analysis of Full-vehicle Featuring Electrorheological Suspension and Electrorheological Brake (ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.464-471
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological(ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.