• Title/Summary/Keyword: Brain-derived neurotropic factor (BDNF)

Search Result 10, Processing Time 0.025 seconds

Association between the Brain-Derived Neurotropic Factor and Attention Deficit Hyperactivity Disorder (BDNF가 ADHD의 병인과 치료에 미치는 영향)

  • Kang, Na Ri;Song, Jae Min;Kwack, Young-Sook
    • Korean Journal of Biological Psychiatry
    • /
    • v.25 no.2
    • /
    • pp.21-30
    • /
    • 2018
  • Attention deficit hyperactivity disorder (ADHD) is a common childhood psychiatric disorder. Recently, it has been suggested that brain-derived neurotropic factor (BDNF) may play a role in the pathogenesis of ADHD. Our aim of this review is to understand the physiological functions of BDNF and its potential relationship with ADHD and therapeutic approaches of ADHD. Searches were conducted in Pubmed and Research Information Service System (RISS). In this review, we summarized important literatures for the physiological functions of BDNF in neurodevelopment, change of serum BDNF level in ADHD, association of BDNF polymorphism and ADHD and potential association of treatment of ADHD with serum BDNF level. Further studies are required to more clearly understand the source and the role of BDNF in ADHD and to develop BDNF based-ADHD treatement.

  • PDF

Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor

  • Sur, Bongjun;Lee, Bombi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.415-425
    • /
    • 2022
  • Memory formation in the hippocampus is formed and maintained by circadian clock genes during sleep. Sleep deprivation (SD) can lead to memory impairment and neuroinflammation, and there remains no effective pharmacological treatment for these effects. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. In this study, we investigated the effects of MYR on memory impairment, neuroinflammation, and neurotrophic factors in sleep-deprived rats. We analyzed SD-induced cognitive and spatial memory, as well as pro-inflammatory cytokine levels during SD. SD model rats were intraperitoneally injected with 10 and 20 mg/kg/day MYR for 14 days. MYR administration significantly ameliorated SD-induced cognitive and spatial memory deficits; it also attenuated the SD-induced inflammatory response associated with nuclear factor kappa B activation in the hippocampus. In addition, MYR enhanced the mRNA expression of brain-derived neurotropic factor (BDNF) in the hippocampus. Our results showed that MYR improved memory impairment by means of anti-inflammatory activity and appropriate regulation of BDNF expression. Our findings suggest that MYR is a potential functional ingredient that protects cognitive function from SD.

Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice

  • Weon, Jin Bae;Jung, Youn Sik;Ma, Choong Je
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.298-304
    • /
    • 2016
  • Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

Effects of Memory and Learning Training on Neurotropic Factor in the Hippocampus after Brain Injury in Rats (뇌손상 흰쥐에서 기억과 학습훈련이 해마의 신경 성장인자에 미치는 영향)

  • Heo, Myoung;Bang, Yoo-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.309-317
    • /
    • 2009
  • This study was to investigate the effects of restoring cognition function and neurotrophic factor in the hippocampus according to memory and learning training in rats affected by brain injury. Brain injury was induced in Sprague-Dawley rats(36 rats) through middle cerebral artery occlusion(MCAo). And then experiment groups were randomly divided into three groups; Group I: Brain injury induction(n=12), Group II: the application for treadmill training after brain injury induction(n=12), Group III: the application for memory and learning training after brain injury induction(n=12). Morris water maze acquisition test and retention test were performed to test cognitive function. And the histological examination was also observed through the immunohistochemistric response of BDNF(brain-derived neurotrophic factor) in the hippocampus. For Morris water maze acquisition test, there were significant interactions among the groups with the time(p<.001). The time to find the circular platform in Group III was more shortened than in Group I, II on the 9th, 10th, 11th and 12th day. For Morris water maze retention test, there were significant differences among the groups(p<.001). The time to dwell on quadrant circular platform in Group III on the 13th day was the longest compared with other groups. And as the result of observing the immunohistochemistric response of BDNF in the hippocampus CA1, the response of immunoreactive positive in Group III on the 7th day increased more than that of Group I, II. These results suggested that the memory and learning training in rats with brain injury has a more significant impact on restoring cognitive function via the changes of neurotropic factor expression and synaptic neuroplasticity.

Effects of Chronic Treatment of Taegeuk Ginseng on Cognitive Function Improvement in Scopolamine Induced Memory Retarded Rats (태극삼의 장기투여가 인지기능향상과 기억력증진에 미치는 영향)

  • Lee, Cheol-Hyeong;Park, Ji Hye;Kim, Kyu Il;Lee, Seoul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.18-22
    • /
    • 2022
  • To investigate effects of cognitive function improvement whether against Taegeuk ginseng on scopolamine-induced memory impairment in rats. All experiments were conducted in three groups: the control group (CTR), the scopolamine 0.4mg/kg (SCP), and the scopolamine (SCP+T) treated with Taegeuk ginseng 100 mg/kg. Taegeuk ginseng 100 mg/kg daily was orally administered for one month and treated with scopolamine was only for 7 consecutive days on the Morris water maze task. 3 weeks after oral administration of Taegeuk ginseng, subjects were performed the Morris water maze test for 8 days and then the open-field exploration test which to assessed for cognitive function improvement. After behavioral testing, subjects were sacrificed and microdissected brains for neurochemical analysis. In the cognitive-behavioral test, long-term administration of Taegeuk ginseng improved spatial navigation learning task compared with the impeded by scopolamine treatment. In neurochemistry, the expression of the synaptic marker PSD95 (postsynaptic density protein 95) was increased in the hippocampus compared to the scopolamine group. Also, brain-derived neurotrophic factor (BDNF) expression was significantly increased in the taegeuk ginseng administration group. These data suggested that long-term administration of taegeuk ginseng might improve cognitive-behavioral functions on hippocampal related spatial learning memory, and it was correlated with neurotropic and synaptic reinforcement. In conclusion, treatment with taegeuk ginseng may positive outcome on learning and memory deficit disorders.

Boophone disticha attenuates five day repeated forced swim-induced stress and adult hippocampal neurogenesis impairment in male Balb/c mice

  • Nkosiphendule Khuthazelani Xhakaza;Pilani Nkomozepi;Ejekemi Felix Mbajiorgu
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.69-85
    • /
    • 2023
  • Depression is one of the most common neuropsychiatric disorders and is associated with dysfunction of the neuroendocrine system and alterations in specific brain proteins. Boophone disticha (BD) is an indigenous psychoactive bulb that belongs to the Amaryllidacae family, which is widely used in Southern Africa to treat depression, with scientific evidence of potent antidepressant-like effects. The present study examined the antidepressant effects of BD and its mechanisms of action by measuring some behavioural parameters in the elevated plus maze, brain content of corticosterone, brain derived neurotropic factor (BDNF), and neuroblast differentiation in the hippocampus of Balb/c mice exposed to the five day repeated forced swim stress (5d-RFSS). Male Balb/c mice were subjected to the 5d-RFSS protocol to induce depressive-like behaviour (decreased swimming, increased floating, decreased open arm entry, decreased time spent in the open arms and decreased head dips in the elevated plus maze test) and treated with distilled water, fluoxetine and BD. BD treatment (10 mg/kg/p.o for 3 weeks) significantly attenuated the 5d-RFSS-induced behavioural abnormalities and the elevated serum corticosterone levels observed in stressed mice. Additionally, 5d-RFSS exposure significantly decreased the number of neuroblasts in the hippocampus and BDNF levels in the brain of Balb/c mice, while fluoxetine and BD treatment attenuated these changes. The antidepressant effects of BD were comparable to those of fluoxetine, but unlike fluoxetine, BD did not show any anxiogenic effects, suggesting better pharmacological functions. In conclusion, our study shows that BD exerted antidepressant-like effects in 5d-RFSS mice, mediated in part by normalizing brain corticosterone and BDNF levels.

The Ameliorating Effect of Kyung-Ok-Go on Menopausal Syndrome Observed in Ovariectomized Animal Model (난소 절제 동물모델을 이용한 경옥고의 갱년기 증후군 개선 효과)

  • Cho, Kyungnam;Jung, Seo Yun;Bae, Ho Jung;Ryu, Jong Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • Kyung-Ok-Go (KOK) is a traditional prescription used for debilitating natural aging and post-illness debilitation. KOK has been used in a variety of ways because it strengthens immunity, prevents illness, and helps recovery in case of illness. In particular, recent research has revealed that KOK helps improve memory and cognition. Therefore, in this study, we investigated whether KOK was effective in improving memory decline and depression-state observed during menopause. In the present study, we employed ovariectomized mouse as an animal model for measuring menopausal syndrome. The administration of KOK for 8 weeks, the object recognition memory and working memory were improved in novel object recognition test and Y-maze test. And in the forced swimming test, the immobility time were decreased. Additionally, the expression level of mature brain derived neurotropic factor (mBDNF) was increased by KOK administration in ovariectomized mouse hippocampus. These results suggested that KOK could improve cognitive decline and depression during menopausal period, and it might be come from enhancing expression level of mBDNF in hippocampus.

Physicochemical Analysis of Yogurt Produced by Leuconostoc mesenteroides H40 and Its Effects on Oxidative Stress in Neuronal Cells

  • Lee, Na-Kyoung;Lim, Sung-Min;Cheon, Min-Jeong;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.261-273
    • /
    • 2021
  • Leuconostoc mesenteroides H40 (H40) was isolated from kimchi, and its probiotic properties and neuroprotective effect was evaluated in oxidatively stressed SH-SY5Y cells. H40 was stable in artificial gastric conditions and can be attached in HT-29 cells. In addition, H40 did not produce β-glucuronidase and showed resistant to several antibiotics. The conditioned medium (CM) was made using HT-29 cells refined with heat-killed probiotics (Probiotics-CM) and heated yogurts (Y-CM) to investigate the neuroprotective effect. Treatment with H40-CM not only increased cell viability but also significantly improved brain derived neurotropic factor (BDNF) expression and reduced the Bax/Bcl-2 ratio in oxidatively stress-induced SH-SY5Y cells. Besides, probiotic Y-CM significantly increased BDNF mRNA expression and decreased Bax/Bcl-2 ratio. The physicochemical properties of probiotic yogurt with H40 was not significantly different from the control yogurt. The viable cell counts of lactic acid bacteria in control and probiotic yogurt with H40 was 8.66 Log CFU/mL and 8.96 Log CFU/mL, respectively. Therefore, these results indicate that H40 can be used as prophylactic functional dairy food having neuroprotective effects.

Neuroprotective effects of Sohaphwangwon essential oil in a Parkinson's disease mouse model (MPTP로 유도된 Parkinson's disease 동물 모델을 이용한 소합향원(蘇合香元)의 신경보호 효과 및 그 작용 기전 연구)

  • Kim, In-Ja;Lee, Ji-Hyun;Song, Kyoo-Ju;Koo, Byung-Soo;Kim, Geun-Woo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.23 no.1
    • /
    • pp.129-143
    • /
    • 2012
  • Objectives : To evaluate the neuroprotective effects of the essential oil from Sohaphwangwon (SH), a Chinese traditional medicinal prescription in a Parkinson's disease mouse model. Methods : 1. The neuroprotective effect of SH on primary neuronal cells was examined by using 1-methyl-4-phenylpyridinium ion (MPP+). 2. The neuroprotective effect of SH was examined in a Parkinson's disease mouse model. C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day), intraperitoneal (i.p.) for 5 days. SH inhalation was applied before MPTP treatment for 7 days and continued until 12 days after the first MPTP treatment. 3. To find out the intracellular target signal molecule(s) regarding the neuroprotective effect of SH essential oil, brain-derived neurotropic factor (BDNF) and synaptic protein SNAP25 were examined by Western blot analysis. Results : 1. MPP+ induced a concentration-dependent decrease in cell viability. However, in the presence of 3 and 5 ug/ml of SH, MPP+-induced cell death was significantly reduced. 2. SH inhalation in MPTP mice led to the restoration of behavioral impairment and rescued tyrosine hydroxylase (TH)-positive dopaminergic neurodegeneration. 3. In SH / MPTP mice, BDNF and SNAP25 increased. Conclusions : This experiment suggests that the neuroprotective effect of SH essential oil is mediated by the expression of BDNF. Furthermore, SH essential oil may serve as a potential preventive or therapeutic agent regarding Parkinson's disease.

The Effect of Exercise Training on Aβ-42, BDNF, GLUT-1 and HSP-70 Proteins in a NSE/ APPsw-transgenic Model for Alzheimer's Disease. (지구성 운동이 NSE/APPsw 알츠하이머 질환 생쥐의 인지능력, Aβ-42, BDNF, GLUT-1과 HSP-70 단백질 발현에 미치는 영향)

  • Eum, Hyun-Sub;Kang, Eun-Bum;Lim, Yea-Hyun;Lee, Jong-Rok;Cho, In-Ho;Kim, Young-Soo;Chae, Kab-Ryoung;Hwang, Dae-Yean;Kwak, Yi-Sub;Oh, Yoo-Sung;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.796-803
    • /
    • 2008
  • Mutations in the APP gene lead to enhanced cleavage by ${\beta}-$ and ${\gamma}-secretase$, and increased $A{\beta}$ formation, which are closely associated with Alzheimer's disease (AD)-like neuropathological changes. Recent studies have shown that exercise training can ameliorate pathogenic phenotypes ($A{\beta}-42$, BDNF, GLUT-1 and HSP70) in experimental models of Alzheimer's disease. Here, we have used NSE/APPsw transgenic mice to investigate directly whether exercise training ameliorates pathogenic phenotypes within Alzheimer's brains. Sixteen weeks of exercise training resulted in a reduction of $A{\beta}-42$ peptides and also facilitated improvement of cognitive function. Furthermore, GLUT -1 and BDNF proteins produced by exercise training may protect brain neurons by inducing the concomitant expression of genes that encode proteins (HSP-70) which suppress stress induced neuron cell damages from APPsw transgenic mice. Thus, the improved cognitive function by exercise training may be mechanistically linked to a reduction of $A{\beta}-42$ peptides, possibly via activation of BDNF, GLUT-1, and HSP-70 proteins. On the basis of the evidences presented in this study, exercise training may represent a practical therapeutic management strategy for human subjects suffering from Alzheimer's disease.