• 제목/요약/키워드: Brain-Computer Interface (BCI)

검색결과 145건 처리시간 0.023초

안정상태 시각유발전위 기반의 기능적 전기자극 재활훈련 시스템 (Steady-State Visual Evoked Potential (SSVEP)-based Rehabilitation Training System with Functional Electrical Stimulation)

  • 손량희;손종상;황한정;임창환;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권5호
    • /
    • pp.359-364
    • /
    • 2010
  • The purpose of the brain-computer (machine) interface (BCI or BMI) is to provide a method for people with damaged sensory and motor functions to use their brain to control artificial devices and restore lost ability via the devices. Functional electrical stimulation (FES) is a method of applying low level electrical currents to the body to restore or to improve motor function. The purpose of this study was to develop a SSVEP-based BCI rehabilitation training system with FES for spinal cord injured individuals. Six electrodes were attached on the subjects' scalp ($PO_Z$, $PO_3$, $PO_4$, $O_z$, $O_1$ and $O_2$) according to the extended international 10-20 system, and reference electrodes placed at A1 and A2. EEG signals were recorded at the sampling rate of 256Hz with 10-bit resolution using a BIOPAC system. Fast Fourier transform(FFT) based spectrum estimation method was applied to control the rehabilitation system. FES control signals were digitized and transferred from PC to the microcontroller using Bluetooth communication. This study showed that a rehabilitation training system based on BCI technique could make successfully muscle movements, inducing electrical stimulation of forearm muscles in healthy volunteers.

정상상태시각유발전위를 이용한 Mirror Neuron System 기반 BCI 시스템 개발 (Development of Mirror Neuron System-based BCI System using Steady-State Visually Evoked Potentials)

  • 이상경;김준엽;박승민;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.62-68
    • /
    • 2012
  • 정상상태시각유발전위 (Steady-State Visually Evoked Potentials)는 특정 주파수를 가진 시각자극에 대한 자연반응 신호이며 3.5Hz~75Hz의 주파수 범위를 갖는 시각 자극에 의해 동일한 주파수로 후두엽 영역이 전기적 활성화되는 특성이 있다. 본 논문에서 이러한 SSVEP 특성을 기반으로 EEG 분석을 수행하는 실험 패러다임을 구축하여 행동유발특성을 가지는 특정 객체에 대한 영상입력 시각자극에서의 주파수 패턴에 대응하는 EEG의 주파수 특징을 검출하고 이를 기반으로 객체와 관련된 행동유발특성을 Mirror Neuron System을 통해 측정한다. 이 때 측정된 EEG 기반 행동유발특성 데이터에 대한 선형판별분석을 수행하여 객체 패턴분류를 실시간으로 수행한다. 이러한 SSVEP 관측 실험을 기반으로 사용자의 내재적 의도를 파악하기 위한 Brain-Computer Interface(BCI) 시스템을 제안했다. Speller 등으로 대표되는 기존의 SSVEP 응용시스템은 격자영상패턴에 대응하는 뇌파특성 분석에 따른 패턴분류의 수행이 가능하나 본 논문의 SSVEP 기반 BCI는 다양한 형태의 사물을 입력객체로 활용하여 분류가 가능함으로 인해 범용성이 높아졌다.

Reference를 갖는 ICA를 이용한 자동적 P300 검출 (Automatic P300 Detection using ICA with Reference)

  • Park, Heeyoul;Park, Seungjin
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.193-195
    • /
    • 2003
  • The analysis of EEG data is an important task in the domain of Brain Computer Interface (BCI). In general, this task is extremely difficult because EEG data is very noisy and contains many artifacts and consists of mixtures of several brain waves. The P300 component of the evoked potential is a relatively evident signal which has a large positive wave that occurs around 300 msec after a task-relevant stimulus. Thus automatic detection of P300 is useful in BCI. To this end, in this paper we employ a method of reference-based independent component analysis (ICA) which overcomes the ordering ambiguity in the conventional ICA. We show here. that ICA incorporating with prior knowledge is useful in the task of automatic P300 detection.

  • PDF

EEG 신호의 Power Spectrum을 이용한 사람의 감정인식 방법 : Bayesian Networks와 상대 Power values 응용 (Human Emotion Recognition using Power Spectrum of EEG Signals : Application of Bayesian Networks and Relative Power Values)

  • 염홍기;한철훈;김호덕;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.251-256
    • /
    • 2008
  • 많은 연구자들은 여러 개의 채널을 가진 Electroencephalogram(EEG) 신호를 기반으로 한 사람의 감정인식을 위해 두뇌와 컴퓨터의 인터페이스에 관한 연구를 하고 있다. EEG 신호를 이용한 연구들은 주로 의학 분야와 심리학의 영역에서 간질이나 발작 등을 알아내고 거짓말 탐지기로써의 역할로 많이 사용되어져 왔다. 최근에는 사람의 두뇌와 컴퓨터 간의 인터페이스에 관한 연구들이 뇌파를 이용한 로봇의 제어하거나 게임을 하는 등의 여러 가지 공학적인 접근으로써 많은 연구가 진행되고 있다. 특히, EEG 신호를 통해서 두뇌를 연구하는 분야에서 EEG 신호의 잡음을 제거해서 보다 정확한 신호를 추출하는 연구에도 많이 중점을 두고 있다. 본 논문에서는 사람의 감정에 따른 EEG 신호를 측정하고 측정된 EEG 신호를 5개 부분의 주파수 영역으로 분류하였다. 영역별로 분류된 EEG 신호들은 전체영역에 대한 상대적인 비율의 값으로 계산하게 된다. 그 값들은 Bayesian Networks를 통해서 현재 어떠한 감정을 나타내는지 확률 값으로 나타낸다. 그 결과 값에 따라 사람의 감정은 아바타로 표현하게 된다.

Optimal EEG Feature Extraction using DWT for Classification of Imagination of Hands Movement

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.786-791
    • /
    • 2011
  • An optimal feature selection and extraction procedure is an important task that significantly affects the success of brain activity analysis in brain-computer interface (BCI) research area. In this paper, a novel method for extracting the optimal feature from electroencephalogram (EEG) signal is proposed. At first, a student's-t-statistic method is used to normalize and to minimize statistical error between EEG measurements. And, 2D time-frequency data set from the raw EEG signal was extracted using discrete wavelet transform (DWT) as a raw feature, standard deviations and mean of 2D time-frequency matrix were extracted as a optimal EEG feature vector along with other basis feature of sub-band signals. In the experiment, data set 1 of BCI competition IV are used and classification using SVM to prove strength of our new method.

EEG Feature Classification Based on Grip Strength for BCI Applications

  • Kim, Dong-Eun;Yu, Je-Hun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.277-282
    • /
    • 2015
  • Braincomputer interface (BCI) technology is making advances in the field of humancomputer interaction (HCI). To improve the BCI technology, we study the changes in the electroencephalogram (EEG) signals for six levels of grip strength: 10%, 20%, 40%, 50%, 70%, and 80% of the maximum voluntary contraction (MVC). The measured EEG data are categorized into three classes: Weak, Medium, and Strong. Features are then extracted using power spectrum analysis and multiclass-common spatial pattern (multiclass-CSP). Feature datasets are classified using a support vector machine (SVM). The accuracy rate is higher for the Strong class than the other classes.

거울신경체계 구현을 위한 EEG 데이터 기반 행동 유도성 특징 분석 (Affordance Feature based on EEG for the Implementation of Mirror Neuron System)

  • 최준호;박승민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.357-358
    • /
    • 2023
  • 본 연구는 실제 행동과 운동 심상으로 팔과 다리 동작 인식을 위한 BCI 패러다임을 제안하고 유도성 분석을 한다. 이 페러다임은 각 팔과 양다리의 특정 움직임을 인식하기 위해 ERP를 기반 페러다임을 구성한다. BCI 페러다임은 왼팔, 오른팔, 양다리를 움직이는 영상 자극을 주며 이를 기반으로 왼팔, 오른팔, 양다리 움직임에 대한 인식을 한다. 거울뉴런은 실제 행동과 실제 행동을 보았을때와 운동심상을 통한 자극을 받았을 때 같은 뉴런이 활성화된다는 성질을 가지고 있다. 이러한 성질을 이용하여 운동심상만과 실제 행동을 동시에 학습할 경우를 유도성 분석을 진행한다. 또한 유도성 특징 분석을 통해 나타난 결과를 바탕으로 BCI 패러다임을 제안한다.

  • PDF

뇌와 컴퓨터의 인터페이스를 위한 뇌파 측정 및 분석 방법 (EEG Signals Measurement and Analysis Method for Brain-Computer Interface)

  • 염홍기;장인훈;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.147-150
    • /
    • 2008
  • 사람과 컴퓨터의 인터페이스를 위한 방법에는 여러 가지가 있으나 보다 편리하고 몸이 불편한 사람들도 이용할 수 있도록 하기 위하여 최근에는 사람의 생체신호를 이용하여 Interface하기위한 연구가 활발히 진행되고 있다. 생체신호에는 뇌파, 근전도, 심전도, 등 여러 가지가 있지만 이를 위해 사용자의 가장 많은 정보를 내포하고 있는 뇌파에 대한 연구는 필수적이다. 따라서 세계 여러 나라에서 뇌파에 대한 연구가 진행되고 있지만 아직까지는 뇌파에 대한 정확한 분석이 이루어지지 못하고 있는 실정이다. 이를 위해 본 논문에서는 정확한 뇌파분석을 위한 뇌파 유발 자극 방법 및 측정법을 제안하고 사람이 몸을 움직이고자 하는 상상을 할 때 ERS(Event-Related Synchronization), ERD(Event-Related Desynchronization)를 분석함으로써 사람의 의도를 뇌파를 통해 분석하고자 한다.

  • PDF

뇌-컴퓨터-인터페이스를 이용한 암환자들의 전전두엽 뇌파 분석 (Patterns Analysis of Prefrontal Brain Waves of Cancer Patients using Brain-Computer-Interface)

  • 한영수;채명신;박병운;박종기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권3호
    • /
    • pp.169-178
    • /
    • 2008
  • 암환자들은 암의 진행과 항암화학요법 등의 치료로 인해 심신의 불안정과 항상성의 저하로 큰 고통을 겪고 있다. 간편하면서 인체에 아무 해를 주지 않는 뇌파를 기반으로 하는 뇌-컴퓨터-인터페이스(BCI) 기술로서 암 환자의 상태를 모니터링하여 적절한 처치를 취할 수 있다는 것은 매우 중요한 일이다. 암환자들의 전전두엽에 헤드밴드 형태의 건성전극단자를 부착하고, 컴퓨터와 연결된 휴대용 뇌파측정 장치로 전전두엽 뇌파(Fp1, Fp2)를 측정하였다. 컴퓨터를 통하여 파장대 별로 얻어진 뇌파를 상호 연관성에 따라 뇌지수로 구분한 후 통계 처리하여 유의성을 검증하였다. 암환자군과 정상대조군을 비교한 결과 암환자군에 비하여 정상대조군이 기초율동지수, 주의지수, 정서지수, 항스트레지수와 좌우뇌균형지수에서 유의하게 높은 차이를 나타냈다. 따라서 뇌파 측정이 환자의 상태를 모니터링하는 중요한 도구로서의 가능성을 보였다.