• 제목/요약/키워드: Brain vesicle

검색결과 40건 처리시간 0.029초

Identification and Expression Patterns of kif3bz during the Zebrafish Embryonic Development

  • Lee, A-Ram;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.411-418
    • /
    • 2009
  • We are reporting the identification, expression patterns, and possible biological functions of zebrafish kif3b (kif3bz) encoding 475 amino acids. Kif3Bz contains the kinesin motor domain, catalytic domain, KISc domain, and one single coiled coil domain. Phylogenetic analysis indicates that kif3bz is a highly conserved gene among the tested vertebrates. First of all, both maternal and zygotic messages of kif3bz were evenly distributed in the blastomeres at 2-cell stage. Its ubiquitous expression throughout the blastomeres continued till 40% epiboly. However, kif3bz transcripts became restricted in Kupffer's vesicle at tailbud and 6-somite stages. At 13-somite stage, kif3bz expression pattern became specific to the telencephalon, diencephalon, trigeminal placode, and somites. Such expression patterns were further intensified in the telencephalon, diencephalons, hind brain, pronephric ducts, optic vesicles, and spinal cord neurons in the 23-somite stage embryos, and last till 24 hpf. We discussed possible functions of Kif3Bz related to the vertebrate embryonic development.

Synaptobrevin (VAMP)유전자의 대장균에서의 발현 및 Clostridium botulinum type B 독소에 의한 절단 (Expression of Mouse Synaptobrevin (VAMP) Gene in E. coli and its Cleavage by the Clostridium botulinum type B Toxin)

  • 정현호;양기혁;이상달;양규환
    • Toxicological Research
    • /
    • 제13권4호
    • /
    • pp.417-421
    • /
    • 1997
  • Synaptobrevin is a kind of vesicle associated membrane proteins (VAMPs) which plays a secretary role in the neuronal synapse and was recently known as the biochemical target of botulinum neurotoxin type B. The structural gene of the synaptobrevin was cloned from mouse brain using RT-PCR technique and was seqrtenced. The deduced amino acid sequence showed that the synaptobrevin protein from mouse brain is exactly the same with that of the rat brain in the amino acid level. The synaptobrevin gene was subcloned into pET3a vector and expressed in E. coli. The molecular weight of the recombinant protein was 19 kDa as expected. Moreover, when the recombinant synaptobrevin protein was incubated with the native neurotoxin of Clostridium botulinum type B, it was cleaved by the toxin in a time dependent manner. This implies that the recombinant synaptobrevin protein and the native toxin are reacted in the same way as the native synaptobrevin did in the neuronal cells.

  • PDF

Developmental Anomalies of Central Nervous System in Human

  • Chi, Je G.
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.11-16
    • /
    • 2001
  • The development of the central nervous system is a continuous process during the embryonic and fetal periods. For a better understanding of congenital anomalies of central nervous system, three major events of normal development, i.e., neurulation (3 to 4 weeks), brain vesicle formation (4 to 7 weeks) and mantle formation (over 8 weeks) should be kept in mind. The first category of anomalies is neural tube defect. Neural tube defects encompass all the anomalies arise in completion of neurulation. The second category of central nervous system anomalies is disorders of brain vesicle formation. This is anomaly that applies for "the face predicts the brain". Holoprosencephaly covers a spectrum of anomalies of intracranial and midfacial development which result from incomplete development and septation of midline structures within the forebrain or prosencephalon. The last category of central nervous system malformation is disorders involving the process of mantle formation. In the human, neurons are generated in two bursts, the first from 8 to 10 weeks and next from 12 to 14 weeks. By 16 weeks, most of the neurons have been generated and have started their migration into the cortex. Mechanism of migration disorders are multifactorial. Abnormal migration into the cortex, abnormal neurons, faulty neural growth within the cortex, unstable pial-glial border, degeneration of neurons, neural death by exogenous factors are some of the proposed mechanism. Agyria-pachygyria are characterized by a four-layerd cortex. Polymicrogyria is gyri that are too numerous and too small, and is morphologically heterogeneous. Cortical dysplasia is characterized by the presence Q[ abnormal neurons and glia arranged abnormally in focal areas of the cerebral cortex. Neuroglial malformative lesions associated with medically intractable epilepsy are hamartia or hamartoma, focal cortical dysplasia and microdysgenesis.ysgenesis.

  • PDF

Phototransduction and Visual Cycle in the Ascidian Tadpole Larva

  • Kusakabe, Takehiro;Nakashima, Yuki;Kusakabe, Rie;Horie, Takeo;Kawakami, Isao;Yoshida, Reiko;Inada, Kyoko;Nakagawa, Masashi;Tsuda, Motoyuki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.37-40
    • /
    • 2002
  • Ascidians are lower chordates, and their tadpole-like larvae share a basic body plan with vertebrates. To study photoreceptive systems in ascidians, we have isolated and characterized cDNA clones for three opsins, five G protein ${\alpha}$ subunits (G${\alpha}$), catalytic and regulatory subunits of cGMP phosphodiesterase (PDE), and arrestin from the ascidian Ciona intestinalis tadpole larva. Ci-opsin1 and Ci-opsin2 are vertebrate-type opsins, while Ci-opsin3 is a retinal photoisomerase similar to retinochrome and mammalian RGR. Both Ci-opsin1 and arrestin are specifically localized in the photoreceptor cells of the ocellus, whereas Ci -opsin2 is not expressed in the photoreceptors, but is co-localized in another population of neurons in the brain with PDE (Ci-PDE9 and Ci-PDE$\delta$). Ci-opsin3 is present in the entire region of the brain. Though five different cDNAs encoding Ga have been cloned, no transducin-type G protein has been found yet. Interestingly, one of G${\alpha}$i isoform is conspicuously expressed in the entire region of the brain. The Ci-opsin3 gene expression was observed in a broad area of the brain vesicle as well as in the visceral ganglion. Genes encoding ascidian homologs of CRALBP and ${\beta}$-CD, whose function is required for the mammalian visual cycle, are co-expressed with Ci-opsin3 in the brain vesicle and visceral ganglion. Localization of Ci-opsin3, CRALBP, and ${\beta}$-CD in a broad area of the brain suggests that the brain of the ascidian larva has a visual cycle system similar to that of the vertebrate RPE. Based on these data, we discuss the evolution of vertebrate visual systems.

  • PDF

MICAL-like Regulates Fasciclin II Membrane Cycling and Synaptic Development

  • Nahm, Minyeop;Park, Sunyoung;Lee, Jihye;Lee, Seungbok
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.762-767
    • /
    • 2016
  • Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule (NCAM), plays a critical role in synaptic stabilization and plasticity. Although this molecule undergoes constitutive cycling at the synaptic membrane, how its membrane trafficking is regulated to ensure proper synaptic development remains poorly understood. In a genetic screen, we recovered a mutation in Drosophila mical-like that displays an increase in bouton numbers and a decrease in FasII levels at the neuromuscular junction (NMJ). Similar phenotypes were induced by presynaptic, but not postsynaptic, knockdown of mical-like expression. FasII trafficking assays revealed that the recycling of internalized FasII molecules to the cell surface was significantly impaired in mical-like-knockdown cells. Importantly, this defect correlated with an enhancement of endosomal sorting of FasII to the lysosomal degradation pathway. Similarly, synaptic vesicle exocytosis was also impaired in mical-like mutants. Together, our results identify Mical-like as a novel regulator of synaptic growth and FasII endocytic recycling.

Rat Brain cDNA Library로부터 SNAP-25 유전자의 클로닝 (Cloning of SNAS-25 Gene from Rat Brain cDNA Library)

  • 조애리;지영미;유민;이순철;유관희
    • 대한의생명과학회지
    • /
    • 제6권1호
    • /
    • pp.11-17
    • /
    • 2000
  • SNAP-25는 presynaptic plasma membrane에 위치하는 단백질로서 synaptic vesicle의 docking과 fusion에 있어서 매우 중요한 역할을 한다. 생쥐 SNAP-25$^{2)}$ 유전자와 99%의 높은 homology를 갖고 있는 Z2 cDNA를 probe로 사용하여 쥐의 뇌 cDNA library에서 SNAP-25유전자를 screening하였다. 그 결과 6개 의 양성 클론을 분리 해 냈으며, 이들 각각을 S1, S2, S3, S4, S5, S6으로 명명하였다. 이 중에서 생쥐 SNAP-25와 가장 높은 homology를 보여 주고 있는 S5 클론을 선택하여 염기서열을 분석하였다. 2,100 bp의 염기서열로 구성된 쥐 SNAP-25 cDNA는 206개의 아미노산을 coding하는 618 bp의 open reading frame을 가지고 있으며, ORF는 209~211 bp에 위치하는 AUG codon에서 시작하여 827~829 bp에 위치하는 stop codon TAA에서 끝난다. 3' untranslated region에서 는 28과 19개 의 CA 반복 염기서열을 보여주고 있었으며, SNAP-25 peptide sequence에서 4개의 cystein residues는 84~91에 위치하고 있었으며, amino terminus 부분에서 amphipathic $\alpha$-helix를 형성하고 있는 것을 볼 수 있었다. 사람과 쥐의 SNAP-25 유전자는 88%, 생쥐와 쥐의 경우는 97%의 homology를 보여 주고 있었다. 그리고 사람과 쥐의 ORF에서 염기서열은 94%,생쥐와 쥐의 ORF에서 염기서열은 100%의 homology를 보여주고 있었으며 사람, 생쥐, 그리고 쥐의 ORF에서 아미노산 서열은 100%의 homology를 보여주고 있었다.

  • PDF

Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과 (Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A)

  • 남기열
    • KSBB Journal
    • /
    • 제7권4호
    • /
    • pp.302-307
    • /
    • 1992
  • protein phosphatase 2A는 bovine brain homogenate의 세포질 fraction에서 얻어졌다. 기질로서 인산화된 histione H1을 이용하여 측정한 phosphatase 의 활성은 dipalmitoyIphophatidylcholine(DPPC) 혹은 phosphatidylserine/DPPC의 혼합물로 구성된 liposome의 존재하에서 저해되었다. Protein phosphatase 2A의 lipid membrane에의 결합은 다중층 지질막의 혼합물 계에서 liposome 의 양이 증가함에 따라서 상등액 중의 phosphatase의 활성이 감소하는 것으로 확인할 수 있었다. 또한 [$^{125}I$]protein phosphatase 2A가 liposome과 동시에 용출되는 것으로도 확인되었다. 그러나 liposome에 대한 protein phosphatase의 친화력은 높지 않았다. 한편, okadaic acid와 liposome은 협동으로 phosphatase의 활성을 감소시켰다. 이것은 okadaic acid가 lipid membrane이나 membrane에 결함한 phosphatase에는 결합하지 않는다는 것을 의미한다. 그러므로 lipid membrane에 의한 protein phosphatase 2A의 활성 저해 효과는 phosphatase 2A와 lipid membrane과의 결합에 의한 것이라고 설명될 수있다.

  • PDF

CoMIC, the hidden dynamics of mitochondrial inner compartments

  • Cho, Bongki;Sun, Woong
    • BMB Reports
    • /
    • 제50권12호
    • /
    • pp.597-598
    • /
    • 2017
  • Mitochondria have evolutionarily, functionally and structurally distinct outer- (OMM) and inner-membranes (IMM). Thus, mitochondrial morphology is controlled by independent but coordinated activity of fission and fusion of the OMM and IMM. Constriction and division of the OMM are mediated by endocytosis-like machineries, which include dynamin-related protein 1 with additional cytosolic vesicle scissoring machineries such as actin filament and Dynamin 2. However, structural alteration of the IMM during mitochondrial division has been poorly understood. Recently, we found that the IMM and the inner compartments undergo transient and reversible constriction prior to the OMM division, which we termed CoMIC, ${\underline{C}}onstriction$ ${\underline{o}}f$ ${\underline{M}}itochondrial$ ${\underline{I}}nner$ ${\underline{C}}ompartment$. In this short review, we further discuss the evolutionary perspective and the regulatory mechanism of CoMIC during mitochondrial division.

The Ascidian Numb Gene Involves in the Formation of Neural Tissues

  • Ahn, Hong Ryul;Kim, Gil Jung
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권4호
    • /
    • pp.371-378
    • /
    • 2012
  • Notch signaling plays fundamental roles in various animal development. It has been suggested that Hr-Notch, a Notch homologue in the ascidian Halocynthia roretzi, is involved in the formation of peripheral neurons by suppressing the neural fates and promoting the epidermal differentiation. However, roles of Notch signaling remain controversial in the formation of nervous system in ascidian embryos. To precisely investigate functions of Notch signaling, we have isolated and characterized Hr-Numb, a Numb homologue which is a negative regulator of Notch signaling, in H. roretzi. Maternal expression of Hr-Numb mRNAs was detected in egg cytoplasm and the transcripts were inherited by the animal blastomeres. Its zygotic expression became evident by the early neurula stage and the transcripts were detected in dorsal neural precursor cells. Suppression of Hr-Numb function by an antisense morpholino oligonucleotide resulted in larvae with defect in brain vesicle and palps formation. Similar results have been obtained by overexpression of the constitutively activated Hr-Notch forms. Therefore, these results suggest that Hr-Numb is involved in Notch signaling during ascidian embryogenesis.

Formation of Sensory Pigment Cells Requires Fibroblast Growth Factor Signaling during Ascidian Embryonic Development

  • Kim, Gil-Jung
    • Animal cells and systems
    • /
    • 제7권3호
    • /
    • pp.221-225
    • /
    • 2003
  • The tadpole larva of the ascidian Halocynthia roretzi has two sensory pigment cells in its brain vesicle. To elucidate the temporal requirement for FGF signaling in formation of the pigment cells, embryos were treated with an FGF receptor 1 inhibitor, SU5402, or an MEK inhibitor, U0126 during various embryonic stages. In the present study, it is shown that the embryos treated with SU5402 from the 16-cell stage to the early gastrula stage do not form pigment cells, whereas those treated after the early gastrula stage form pigment cells. In pigment cell formation, embryos suddenly exhibited the sensitivity to SU5402 only for 1 h at the neural plate stage(-4 h after the beginning of gastrulation). When U0126 treatment was carried out at various stages between the 8-cell and late neurula stages, the embryos scarcely formed pigment cells. Pigment cell formation occurred when the embryos were placed in U0126 at early tail bud stage. These results indicate that FGF signaling is involved in pigment cell formation at two separate processes during ascidian embryogenesis, whereas more prolonged period is required for MEK signaling.