• 제목/요약/키워드: Brain damage

검색결과 691건 처리시간 0.032초

Effect of Pioglitazone on Excitotoxic Neuronal Damage in the Mouse Hippocampus

  • Lee, Choong Hyun;Yi, Min-Hee;Chae, Dong Jin;Zhang, Enji;Oh, Sang-Ha;Kim, Dong Woon
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.261-267
    • /
    • 2015
  • Pioglitazone (PGZ), a synthetic peroxisome proliferator-activated receptor ${\gamma}$ agonist, is known to regulate inflammatory process and to have neuroprotective effects against neurological disorders. In the present study, we examined the effects of 30 mg/kg PGZ on excitotoxic neuronal damage and glial activation in the mouse hippocampus following intracerebroventricular injection of kainic acid (KA). PGZ treatment significantly reduced seizure-like behavior. PGZ had the neuroprotective effect against KA-induced neuronal damage and attenuated the activations of astrocytes and microglia in the hippocampal CA3 region. In addition, MPO and $NF{\kappa}B$ immunoreactivities in the glial cells were also decreased in the PGZ-treated group. These results indicate that PGZ had anticonvulsant and neuroprotective effects against KA-induced excitotocix injury, and that neuroprotective effect of PGZ might be due to the attenuation of KA-induced activation in astrocytes and microglia as well as KA-induced increases in MPO and $NF{\kappa}B$.

Glycyrrhizin Attenuates MPTP Neurotoxicity in Mouse and $MPP^+$-Induced Cell Death in PC12 Cells

  • Kim, Yun-Jeong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권2호
    • /
    • pp.65-71
    • /
    • 2008
  • The present study examined the inhibitory effect of licorice compounds glycyrrhizin and a metabolite $18{\beta}$-glycyrrhetinic acid on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse and on the 1-methyl-4-phenylpyridinium ($MPP^+$)-induced cell death in differentiated PC12 cells. MPTP treatment increased the activities of total superoxide dismutase, catalase and glutathione peroxidase and the levels of malondialdehyde and carbonyls in the brain compared to control mouse brain. Co-administration of glycyrrhizin (16.8 mg/kg) attenuated the MPTP effect on the enzyme activities and formation of tissue peroxidation products. In vitro assay, licorice compounds attenuated the $MPP^+$-induced cell death and caspase-3 activation in PC12 cells. Glycyrrhizin up to $100{\mu}M$ significantly attenuated the toxicity of $MPP^+$. Meanwhile, $18{\beta}$-glycyrrhetinic acid showed a maximum inhibitory effect at $10{\mu}M$; beyond this concentration the inhibitory effect declined. Glycyrrhizin and $18{\beta}$-glycyrrhetinic acid attenuated the hydrogen peroxide- or nitrogen species-induced cell death. Results from this study indicate that glycyrrhizin may attenuate brain tissue damage in mice treated with MPTP through inhibitory effect on oxidative tissue damage. Glycyrrhizin and $18{\beta}$-glycyrrhetinic acid may reduce the $MPP^+$ toxicity in PC12 cells by suppressing caspase-3 activation. The effect seems to be ascribed to the antioxidant effect.

중증 뇌 손상환자를 위한 바비튜레이트 혼수요법의 표준임상지침(Critical Pathway) 개발 (Development of a Critical Pathway of Barbiturate Coma Therapy in the Management for Severe Brain Damage)

  • 김정숙
    • 간호행정학회지
    • /
    • 제16권1호
    • /
    • pp.59-72
    • /
    • 2010
  • Purpose: This study is a descriptive research to analyze prognostic factors of barbiturate coma therapy (BCT) for severe brain damage patients, to develop a critical pathway (CP) based on the results of analysis and to examine the effect of its clinical application. Method: We analyzed medical records of 76 patients who received BCT for more than three days between January 1999 to July 2005. Based on the results of the analysis, we developed a CP and applied it to 12 people during August-December of 2005. Result: By application of BCT CP, the mortality rate decreased from 31.6% to 16.7%. It was found that the period of staying at ICU and total period of hospitalization were shortened by 2.78 (13.9%) days and 16.43 (29.4%) days, respectively. The Glasgow coma scale of the recovery group by CP application was 9.03 (4.64) at 72 hours post of BCT and 14.28 (1.82) at discharge from hospital, and DRS was 6.62 (6.38) points. Conclusion: By verifying clinical validity of the suggested CP, we believe that we have obtained visible effects standardizing the treatment pathway of BCT for brain damage patients.

두부외상의 신경정신과적 관점 (Neuropsychiatric Aspect of Traumatic Brain Injury)

  • 김영철
    • 생물정신의학
    • /
    • 제2권2호
    • /
    • pp.157-168
    • /
    • 1995
  • The neuropsychiatric sequelae of traumatic brain unjury(TBI) are effects on complex aspect of behavior, cognition and emotional expression. They include psychiatric disorders such as depression, psychosis, personality change, dementia, and postconcussion syndrome. The damage is done not only to the cortex of the brain but also to subcortical and axial structures. The diffuse degeneration of cerebral white mailer is axonal damage that is caused by mechanical forces shearing the neuronal fiber at the moment of impact(diffuse axonal injury, DAI). The DAI and the changed receptor-agonist mechanism ore the most important mechanisms in genesis of neuropsychiatric sequalae by mild TBI. The most important instrument for diagnosis of neuropsychiatric sequalae of TBI is a physician or psychiatrist with experience and knowledge. The most effective therapeutic tool is a professional who understands the nature of the problem.

  • PDF

Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus

  • Shin, Myoung Cheol;Lee, Tae-Kyeong;Lee, Jae-Chul;Kim, Hyung Il;Park, Chan Woo;Cho, Jun Hwi;Kim, Dae Won;Ahn, Ji Hyeon;Won, Moo-Ho;Lee, Choong-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.47-57
    • /
    • 2022
  • Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

홍화(紅花) 추출물 투여에 의한 뇌출혈 흰쥐 뇌조직의 유전자 발현 조절 (Carthami Flos Extract Treatment Restored Changes of Gene Expression on ICH Model in Rats)

  • 임세현;손영수;백진웅;조수인;김영균
    • 대한예방한의학회지
    • /
    • 제12권3호
    • /
    • pp.81-90
    • /
    • 2008
  • Objectives : The pathophysiology of ICH is not fully understood, therefore, the fundamental therapeutic strategies for ICH also not well inspected either. The genetic profile for the effect of Carthami Flos extract on cerebral hemorrhage in rat brain tissue was measured using microarray technique. Genes displaying expressional change on brain damage were selected and the functional analysis on these genes was conducted. Methods : Rats were placed in a stereotaxic frame after intraperitoneal injection of chloralhydrate, and ICH was induced by injection of collagenase type IV and Carthami Flos extract was administered orally. The molecular profile of cerebral hemorrhage in rat brain tissue was measured using microarray technique to identify up- or down- regulated genes in brain tissue. Results : Upon treatment with Carthami Flos extract on the rat having brain damage, many genes show expressional change. The pattern of gene expressional change can be classified into 8 classes in which two types of classes were composed of recovered genes from up or down-regulation by brain damage, respectively. Conclusions : Further analysis using protein interaction database identified some key molecules that can be used for elucidation of therapeutical mechanism of Carthami Flos extract in future.

  • PDF

하행 흉부 및 흉복부 대동맥 수술 후 척수 손상과 뇌손상 위험인자 분석 (Risk Factor Analysis for Spinal Cord and Brain Damage after Surgery of Descending Thoracic and Thoracoabdominal Aorta)

  • 김재현;오삼세;백만종;정성철;김종환;나찬영
    • Journal of Chest Surgery
    • /
    • 제39권6호
    • /
    • pp.440-448
    • /
    • 2006
  • 서론: 하행 흥부 대동맥 및 흉복부 대동맥 수술은 척수 손상을 포함한 신경학적 손상의 가능성이 높은 수술로서 이에 대한 상당한 주의를 요한다. 이 연구의 목적은 하행 흉부 대동맥 및 흉복부 대동맥 수술 후의 척수 손상과 뇌 손상의 발생빈도와 위험요소를 알아봄으로써 신경학적 손상을 예방하는데 기여하고자 한다. 대상 및 방법: 1995년 10월부터 2005년 7월까지 하행 흉부 대동맥 및 흉복부 대동맥 수술을 시행 받은 33명의 환자를 후향적으로 분석하였다. 하행 흉부 대동맥 수술은 23예, 흉복부 대동맥 수술은 10예였고, 원인 질환으로는 대동맥 박리증이 23예, 대동맥류가 10예였다. 신경학적 손상에 대한 위험인자를 알아내기 위해 수술 전 및 수술 중 변수에 대한 단변량 및 다변량 분석을 시행하였다. 결과: 하지마비가 2예(6.1%)에서 발생하였고 이 중 1예는 영구적 손상이었다. 뇌 손상은 7예 (21%)에서 발생하였고 영구적 뇌 손상은 4예(12%), 일시적 뇌 손상은 3예 발생하였다 척수 손상에 대한 위험인자로는 흉복부 대동맥질환 분류의 Crawford II III형(p=0.011)과 늑간 동맥 문합을 시행한 환자군(p=0.040)으로 나타났다. 뇌 손상에 대한 위험인자로는 심폐기 가동시간이 200분 이상(p=0.023), 좌심방 vent를 시행한 환자군(p=0.005)으로 나타났으며 좌심실 부분 바이패스(left heart partial bypass)는 뇌 손상을 예방하는 인자로서 의미 있게 나타났다(p=0.032). 결론: 하행 흥부 대동맥 및 흉복부 대동맥 수술 후에 발생하는 신경학적 손상 중에서 뇌 손상의 발생빈도가 척수 손상에 비해 높았다. 좌심실 부분 바이패스를 시행한 군에서는 뇌 손상이 발생하지 않았으며 뇌 보호 측면에서 유리한 것으로 나타났다. 또한 척수 손상의 위험이 높은 Crawford II III형 환자나 늑간 동맥 문합이 필요한 환자들에서는 척수 보호를 위한 별도의 조치와 세심한 주의가 필요하다.

Effects of carnosine and hypothermia combination therapy on hypoxic-ischemic brain injury in neonatal rats

  • Byun, Jun Chul;Lee, Seong Ryong;Kim, Chun Soo
    • Clinical and Experimental Pediatrics
    • /
    • 제64권8호
    • /
    • pp.422-429
    • /
    • 2021
  • Background: Carnosine has antioxidative and neuroprotective properties against hypoxic-ischemic (HI) brain injury. Hypothermia is used as a therapeutic tool for HI encephalopathy in newborn infants with perinatal asphyxia. However, the combined effects of these therapies are unknown. Purpose: Here we investigated the effects of combined carnosine and hypothermia therapy on HI brain injury in neonatal rats. Methods: Postnatal day 7 (P7) rats were subjected to HI brain injury and randomly assigned to 4 groups: vehicle; carnosine alone; vehicle and hypothermia; and carnosine and hypothermia. Carnosine (250 mg/kg) was intraperitoneally administered at 3 points: immediately following HI injury, 24 hours later, and 48 hours later. Hypothermia was performed by placing the rats in a chamber maintained at 27℃ for 3 hours to induce whole-body cooling. Sham-treated rats were also included as a normal control. The rats were euthanized for experiments at P10, P14, and P35. Histological and morphological analyses, in situ zymography, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, and immunofluorescence studies were conducted to investigate the neuroprotective effects of the various interventional treatments. Results: Vehicle-treated P10 rats with HI injury showed an increased infarct volume compared to sham-treated rats during the triphenyltetrazolium chloride staining study. Hematoxylin and eosin staining revealed that vehicle-treated P35 rats with HI injury had decreased brain volume in the affected hemisphere. Compared to the vehicle group, carnosine and hypothermia alone did not result in any protective effects against HI brain injury. However, a combination of carnosine and hypothermia effectively reduced the extent of brain damage. The results of in situ zymography, TUNEL assays, and immunofluorescence studies showed that neuroprotective effects were achieved with combination therapy only. Conclusion: Carnosine and hypothermia may have synergistic neuroprotective effects against brain damage following HI injury.

황기와 원지분획의 뇌허혈에 관한 약효연구 (Effects of Astragali Radix and Polygalae Radix on Cerebral Ischemic and Reperfused Injury)

  • 한석희;박진혁;김진숙;이선미
    • 약학회지
    • /
    • 제44권4호
    • /
    • pp.371-377
    • /
    • 2000
  • In order to investigate the pharmacological properties of fractions of Astragali Radix and Polygalae Radix, the effects of the fractions on cerebral ischemia and subsequent reperfusion were studied. Brain ischemia was induced by bilateral common carotid artery occlusion in mongolian gerbil. Brains were recirculated for 30 mins after the 20 min occlusion. Methanol and butanol fractions of Astragali Radix and Polygalae Radix were administered orally 2 hrs before common carotid artery occlusion. Histological observations showed that brain ischemia induced severe brain damage evidenced by the presence of necrotic foci, edema and hemorrhage. This injury was prevented by the methanol fraction and butanol fraction of Polygalae Radix. The level of ATP in brain tissue significantly decreased in ischemic gerbils. This decrease was prevented by the pretreatment with butanol fraction of Polygalae Radix. In contrast, the levels of lactate and lipid peroxide were both elevated in ischemic gerbils. This elevation was inhibited by the pretreatments with methanol fraction and butanol fraction of Polygalae Radix. Our findings suggest that the Polygalae Radix improves ischemia-induced brain damage.

  • PDF

Neuroprotective effects of mild hypoxia in organotypic hippocampal slice cultures

  • Kim, Seh Hyun;Lee, Woo Soon;Lee, Na Mi;Chae, Soo Ahn;Yun, Sin Weon
    • Clinical and Experimental Pediatrics
    • /
    • 제58권4호
    • /
    • pp.142-147
    • /
    • 2015
  • Purpose: The aim of this study was to investigate the potential effects of mild hypoxia in the mature and immature brain. Methods: We prepared organotypic slice cultures of the hippocampus and used hippocampal tissue cultures at 7 and 14 days in vitro (DIV) to represent the immature and mature brain, respectively. Tissue cultures were exposed to 10% oxygen for 60 minutes. Twenty-four hours after this hypoxic insult, propidium iodide fluorescence images were obtained, and the damaged areas in the cornu ammonis 1 (CA1), CA3, and dentate gyrus (DG) were measured using image analysis. Results: In the 7-DIV group compared to control tissue, hypoxia-exposed tissue showed decreased damage in two regions (CA1: $5.59%{\pm}2.99%$ vs. $4.80%{\pm}1.37%$, P=0.900; DG: $33.88%{\pm}12.53%$ vs. $15.98%{\pm}2.37%$, P=0.166), but this decrease was not statistically significant. In the 14-DIV group, hypoxia-exposed tissue showed decreased damage compared to control tissues; this decrease was not significant in the CA3 ($24.51%{\pm}6.05%$ vs. $18.31%{\pm}3.28%$, P=0.373) or DG ($15.72%{\pm}3.47%$ vs. $9.91%{\pm}2.11%$, P=0.134), but was significant in the CA1 ($50.91%{\pm}5.90%$ vs. $32.30%{\pm}3.34%$, P=0.004). Conclusion: Although only CA1 tissues cultured for 14 DIV showed significantly less damage after exposure to hypoxia, the other tissues examined in this study showed a tendency towards less damage after hypoxic exposure. Therefore, mild hypoxia might play a protective role in the brain.