• Title/Summary/Keyword: Brain Somatostatin

Search Result 3, Processing Time 0.018 seconds

The Role of Brain Somatostatin in the Central Regulation of Feed, Water and Salt Intake in Sheep

  • Sunagawa, Katsunori;Weisinger, Richard S.;McKinley, Michael J.;Purcell, Brett S.;Thomson, Craig;Burns, Peta L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.929-934
    • /
    • 2001
  • The physiological role of brain somatostatin in the central regulation of feed intake in sheep was investigated through a continuous intracerebroventricular (ICV) infusion of somatostastin 1-28 (SRIF) at a small dose of $5{\mu}g/0.2ml/hr$ for 98.5 hours from day 1 to day 5. Sheep (n=5) were fed for 2 hours once a day, and water and 0.5 M NaCI solution were given ad libitum. Feed, water and salt intake were measured during ICV infusion of artificial cerebrospinal fluid (CSF) and SRIF. The feed intake during SRIF infusion on days 2 to 5 increased significantly compared to that during CSF infusion. Water intake, when compared to that during CSF infusion, only increased significantly on day 4. NaCI intake during SRIF infusion was not different from that during CSF infusion. Mean arterial blood pressure (MAP) and heart rate during SRIF infusion were not different from those during CSF infusion. The plasma concentrations of Na, K, Cl, osmolality and total protein during SRIF infusion were also not different from those values during CSF infusion.There are two possible mechanisms, that is, the suppression of brain SRIF on feed suppressing hormones and the direct actions on brain mechanisms controlling feed intake, explaining how SRIF works in the brain to bring about increases in feed intake in sheep fed on hay. The results indicate that brain SRIF increases feed intake in sheep fed on hay.

Mechanisms Controlling Feed Intake in Large-type Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Murase, Y.;Hazama, R.;Nagamine, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1182-1189
    • /
    • 2007
  • An intracerebroventricular (ICV) infusion of somatostatin 1-28 (SRIF) was used as a thirst-controlling peptide antagonist to investigate whether or not thirst-controlling peptides are involved in the significant decrease in feed intake during the initial stages of feeding large-type goats on dry forage. A continuous ICV infusion of SRIF was conducted at a small dose of $4{\mu}g$ ml/h for 27 h from day 1 to day 2. Goats (n = 5) were fed roughly crushed alfalfa hay cubes for 2 h twice daily and water was given ad libitum. Feed intake was measured during ICV infusion of artificial cerebrospinal fluid (ACSF) and SRIF. The feed intake during SRIF infusion increased significantly compared to that during ACSF infusion. In comparison to the ACSF treatment, plasma osmolality during the SRIF treatment significantly decreased during the first half of the 2 h feeding period. The factor causing the decrease in plasma osmolality during the ICV infusion of SRIF was a decrease in plasma Na, K, Cl, and Mg concentrations. In comparison to the ACSF infusion treatment, parotid saliva secretion volumes during the 2 h feeding period in the SRIF infusion treatment were significantly larger. While there was no significant difference in cumulative water intake (thirst levels) between the SRIF and the ACSF treatments upon conclusion of the 2 h feeding period, based on the plasma osmolality results it is thought that thirst level increases brought about by alfalfa hay cube feeding in the first half of the feeding period were reduced. It is thought that the somatostatin-induced increases in feed intake during the 2 h feeding period in the present experiment were caused by decreases in plasma osmolality brought about by the somatostatin infusion. As a result, it is suggested that the significant decrease in feed intake during the initial stages of feeding in large-type goats given roughly crushed alfalfa hay cubes, was due to the actions of thirst-controlling peptides.

Relevance of Light Spectra to Growth of the Rearing Tiger Puffer Takifugu rubripes

  • Kim, Byeong-Hoon;Hur, Sung-Pyo;Hur, Sang-Woo;Lee, Chi-Hoon;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In fish, light (photoperiod, intensity and spectra) is main regulator in many physiological actions including growth. We investigate the effect of light spectra on the somatic growth and growth-related gene expression in the rearing tiger puffer. Fish was reared under different light spectra (blue, green and red) for 8 weeks. Fish body weight and total length were promoted when reared under green light condition than red light condition. Expression of somatostatins (ss1 and ss2) in brain were showed higher expression under red light condition than green light condition. The ss3 mRNA was observed only higher expression in blue light condition. Expression of growth hormone (gh) in pituitary was detected no different levels between experimental groups. However, the fish of green light condition group was showed more high weight gain and feed efficiency than other light condition groups. Our present results suggest that somatic growth of tiger puffer is induced under green light condition because of inhibiting ss mRNA expression in brain by effect of green wavelength.