• Title/Summary/Keyword: Bradyrhizobium

Search Result 87, Processing Time 0.023 seconds

Identification of csp Homolog in Bradyrhizobium japonicum

  • No, Jae-Sang;Yu, Ji-Cheol;So, Jae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.602-605
    • /
    • 2001
  • Low-temperature adaptation and protection for environmental stresses were studied in the gram-negative soil bacterium Bradyrhizobium japonicum 61A101c. B. japonicum was more resistant to alcohol, $H_2O_2$, heat and freezing following a pretreatment at $4^{\circ}C$, resulting in approximately 10 to 1,000 folds increased survival compared to mid-exponential-phase cells grown at an optimal temperature at $28^{\circ}C$. This phenomena relate to the cold shock protein expressed when cells are exposed to a downshift in temperature. To confirm the presence of cold shock protein genes in B. japonicum, a PCR strategy was employed using a degenerate primer set, which successfully amplified a putative csp gene fragment. Sequence analysis of the PCR product(200bp) revealed csp-like sequences that were up to 96% identical to csp gene of S. typhimurium.

  • PDF

An Improved Method for Nodulation Test in Test Tube (시험관내 뿌리혹 생성 실험의 개선된 방법)

  • 고상균
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.169-172
    • /
    • 1999
  • Small-seeded legumes can be cultured enclosed in slant agar tubes if dlese plants are to he used for authenicaiing rhizobia or for enumerating 1-hizobia by the plant-inlection technique. An improved method has been developed with substiluting agar slant lor Korean paper(Har7ji). This method was panicularly useful for legumes with rigid radicle such as Cn.xsin 1mnmame. With this method Bmr!,~li1rzobin,17 sp. stram CN9135 on C nonmne induced root nodules biginning at day 7 of the nodulation period in 6% of the l ~ l a ~ l s , and all of ihe plants nodulated 14 days after inoculation by strain CN9135.

  • PDF

Isolation and Characterization of Rhizobia from Soybean Cultivated in Korea (대두(大豆) 근류균(根瘤菌)의 분리(分離) 및 특성(特性))

  • Yun, Han-Dae;Cho, Moo-Je;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.153-162
    • /
    • 1987
  • Soybean rhizobia were isolated from 101 soybean (Glycine max.) cultivar which had been grown for the breeding experiment in Korea. Seven strains of the fast-growing soybean rhizobia and nine strains of the slow-growing soybean rhizobia were selected on the basis of their growth rate in AMA medium and their high ability of nodulation. The slow-growing soybean rhizobia were identified as Bradyrhizobium japonicum in the acetylene-reducing activity, microbial characteristics, and biochemical characteristics whereas the fast-growing soybean rhizobia were very similar to Rhizobium fredii.

  • PDF

Lack of O-Polysaccharide Renders Bradyrhizobium japonicum More Resistant to Organic Acid Stress

  • OH , EUN-TAEX;JU, YOUNG-JUN;KOH, SUNG-CHEOL;KIM, YONG-HWI;KIM, JONG-SUL;SO, JAE-SEONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1324-1326
    • /
    • 2004
  • In previous studies, we isolated an isogenic LPS mutant of Bradyrhizobium japonicum 61A101C, which was completely devoid of O-polysaccharide and had altered cell surface characteristics. Subsequently, the mutated gene was identified, cloned, and used to complement the LPS mutant strain JS314 to restore the phenotype. Since it has been reported that in Escherichia coli LPS O-polysaccharide is involved in resistance to an organic acid such as acetic acid under low pH (Barna et al., Molecular Microbiology 43: 629-640, 2002), we compared the organic acid resistance of the three B. japonicum strains; wild-type 61A101C, the LPS mutant JS314, and the complemented strain to determine whether the role of O-polysaccharide in the resistance to organic acid could be generalized. Growth of all three strains was inhibited by the presence of 3 mM acetic acid under acidic condition (pH 5.5). To our surprise, however, in the presence of 2 mM acetic acid, wild-type and the complemented strains did not grow while the $LPS^-$ mutant showed a significant growth. Therefore, unlike in E. coli, the lack of O­polysaccharide of LPS appears to render B. japonicum more resistant to organic acid.

Molecular Cloning of nod Genes from Bradyrhizobium sp. SNU001 (Bradyrhizobium sp. SNU001 nod 유전자 클로닝)

  • 고세리;심웅섭;안정선
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.246-251
    • /
    • 1992
  • Molccular cloning of nod genes from Bradvrhizobium sp. SNU001, a nitrogen-fixing symbiont isolated from thc root nodules of soybean (Clycine trim) . was carried out. nod genes were found to be located on thc genome of the symbiont by gcnomic hybridization with 4.5 kb EcoRI/HndIII fragment (nod DABC) of Rhizohium meliloti as probe. Genomic library of this symbiont was constructed using h phage EMBL3-BanlHI vector. from which five nod positive clones were sclectcd by primary and secondary screening methods. The partial restriction map of inserted genomic DNA of h CNS-l(c1one 2) was constructed. and 3.9 kh Bun7HI fragment. which showed strong hybridization signal to the probe, was subcloned into pBS KS(+) plasmid vector. Partial restriction inap ot' a selected subclone (pBjCNS-I) was constructed and nod DABC was found to be located on the 1.8 kb KpnI/Sacl fragment of this subclone.

  • PDF

Involvement of Lipopolysaccharide of Bradyrhizobium japonicum in Metal Binding

  • Oh, Eun-Taex;Yun, Hyun-Shik;Heo, Tae-Ryeon;Koh, Sung-Cheol;Oh, Kye-Heon;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.296-300
    • /
    • 2002
  • Bacterial cell surface components are the major factors responsible for pathogenesis and bioremediation. In particular, the surface of a Gram-negative bacterium cell has a variety of components compared to that of a Gram-positive cell. In our previous study, we isolated an isogenic mutant of Bradyrhizobium japonicum, which exhibited altered cell surface characteristics, including an increased hydrophobicity. Polyacrylamide gel electrophoretic analysis of the lipopolysaccharide (LPS) in the mutant demonstrated that the O-polysaccharide part was completely absent. Meanwhile, a gel permeation chromatographic analysis of the exopolysaccharide (EPS) in the mutant demonstrated that it was unaltered. Since LPSs are known to have several anion groups that interact with various cation groups and metal ions, the mutant provided an opportunity to examine the direct role of LPS in metal binding by B. japonicum. Using atomic absorption spectrophotometry, it was clearly demonstrated that LPS was involved in metal binding. The binding capacity of the LPS mutant to various metal ions $(Cd^{2+},\;Cu^{2+},\;Pb^{2+},\;and\;Zn^{2+})$ was 50-70% lower than that of the wild-type strain. Also, through an EPS analysis and desorption experiment, it was found that EPS and centrifugal force had no effect on the metal binding. Accordingly, it would appear that LPS molecules on B. japonicum effect the properties, which precipitate more distinctly metal-rich mineral phase.

Effects of Coinoculation by Bradyrhizobium japonicum with other Rhizobacteria and of Antibiotic Treatment on Soybean Growth and Nodule Formation (근류균(根瘤菌)과 타(他) 근권미생물(根圈微生物)과의 혼합접종(混合接種) 및 항생제처리(抗生劑處理)가 대두(大豆)의 생장(生長)과 근류형성(根瘤形成)에 미치는 영향(影響))

  • Park, Byeong-Jun;Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.190-198
    • /
    • 1996
  • The Neomycin resistant gene in transposon 5 (Tn5) was introduced into a mutant of Bradyrhizobium japonicum RJB 6 $str^rnal^r$ by conjugation. This marked strain was used in coinoculation of soybean with Pseudomonas fluorescens(Ps-3) and Bacillus subtilis(BCAC-4) and in antibiotic treatment of soybean for studying rate of nodule formation and growth promoting effect on soybean plant. When the marked strain RJB 6 $str^rnal^rneo^r$ with Ps-3, BCAC-4, and Ps-3 plus BCAC-4 was coinoculated into two soils, the recovery rate of the marked strain was 8.5, 4.3 and 2.9 percent in soybean cultivated soil, and 10.3. 6.0 and 5.0 percent in soybean uncultivated soil. The best growth promoting effect of coinoculation on soybean plant was found with the marked strain plus Ps-3. When the marked strain was inoculated into soybean with antibiotic treatment, the rate of nodule formation in soybean cultivated soil was between 12.5 and 25.4 percent, while that in soybean uncultivated soil was between 23.7 and 43.2 percent. The highest rate of nodule formation with the marked strain was found in streptomycin 1000 ppm treatment plot.

  • PDF

Characteristics of Indigenous Rhizobium to Korean Soils -I. Symbiotic Potentials of Bradyrhizobium japonicum Populations and Their Colony Morphological Characteristics in Yeongnam Soils (우리나라 토착근류균(土着根瘤菌)의 제(諸) 특성(特性) 연구(硏究) -I. 영남지역(嶺南地域) 토착(土着) 대두근류균(大豆根瘤菌)의 접종효과(接種效果)와 취락형태적(聚落形態的) 분포특성(分布特性))

  • Kang, Ui-Gum;Somasegaran, Padma;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 1990
  • Soybean [Glycin max (L.)] cv. Jangbaekkong was inoculated with 5 cultivated- and 5 uncultivated upland soils, in Yeongnam area, as soil inoculum and NifTAL peat inoculum as standard for soil inoculum potentials by Bradyrhizobium japonicum. 120 Bradyrhizobium japonicum isolates out of the soil populations were scored of three colony morphologies, designed "Dry", "Wet", and "Dry/Wet", and symbiotic effectiveness between "Dry" and "Wet" was compared. The results obtained were summarized as follows: 1. Indigenous populations of B. japonicum were above $10^4cells/g$. soil at the cultivated upland soils but were a few at the uncultivated upland soils except a colluvivum, orchard previously, in Yeongnam area. 2. Inoculum potentials of the cultivated upland soils were higher than the NifTAL inoculum and generally, nodule mass compensated nodule number for symbiotic effectiveness of soil populations. 3. Colony morphologies of soil populations showed the different proportions of "Dry" and "Wet" so that "Dry" types were dominant at the cultivated upland soils while "Wet" types at the uncultivated upland soils. 4. "Dry" colony morphology significantly exhibited higher symbiotic effectiveness than "Wet" types in nodule fresh weight, shoot dry weight, and shoot dry weight/nodule fresh weight. Therefore, as long as soil inoculum potentials, the growth of soybean at the cultivated upland soils could presumedly be affected by soil populations of Bradyrhizobium japonicum of "Dry" colony morphology.

  • PDF

The Effect of Root Exudate and Chemotaxis on Host Recognition in Soybean-Bradyrhizobium Symbiosis (대두(大豆)-근류균(根瘤菌) 공생(共生)에서 뿌리분비물(分泌物)과 화학주성(化學走性)이 숙주인식(宿主認識)에 미치는 영향(影響))

  • Kang, Sang Jai;Park, Woo Churl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.11
    • /
    • pp.121-132
    • /
    • 1993
  • This study was carried out to research the effect of the chemotaxis of Bradyrhizobium japonicum KCTC 2422 and its mutant toward soybean root exudate and to elucidate the effect of the lectin of host specificity (Host Recognition) in soybean-Bradyrhizobium symbiosis. The results obtained were as follows: The homogeneities of the purified lectins from soybean and pea seed was ascertained chromatographically and electrophoretically. Gel electrophoresis of soybean lectin in the presence of sodium dodecyl sulfate appeared a single protein band, whereas pea lectin appeared two protein bands. Soybean lectin from 2 cultivars formed immunoprecipitin arcs at same position with anti-soybean lectin rabbit IgG, but pea lectin did not form immunoprecipitin lines with anti-soybean lectin rabbit IgG. Chemotactic responses of KCTC 2422, LPN-100 and LCR-101 toward proline in capillary assays were 3.1, 1.3 and 1.0-fold above background, respectively. The chemotactic responses of KCTC 2422, LPN-100, and LCR-101 toward Paldal crude root exudate in capillary assays were 3.5, 1.4 and 1.4-fold above background, respectively. The present work shows that B. japonicum and its mutants are capable of very different responses toward root exudate fraction. The chemotactic responses of KCTC 2422 was most with neutral fraction, least with anionic fraction and intermediate with cationic fraction. The nitrogenase activity of soybean nodule was shown in 15days after inoculation with LCR-101. However, we couldn't find out the nodules when soybean was inoculated with LPN-100. From these result we can suppose that the chemotaxis of Bradyrhizobium plays inportant the role of forming the nodule (host recognition) in the soybean-B. japonicum symbiosis.

  • PDF