• Title/Summary/Keyword: Bracing Configuration

Search Result 15, Processing Time 0.023 seconds

Parameters influencing seismic response of horizontally curved, steel, I-girder bridges

  • Linzell, Daniel G.;Nadakuditi, Venkata P.
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.21-38
    • /
    • 2011
  • This study examines the influence of curved, steel, I-girder bridge configuration on girder end reactions and cross frame member forces during seismic events. Simply-supported bridge finite element models were created and examined under seismic events mimicking what could be experienced in AASHTO Seismic Zone 2. Bridges were analyzed using practical ranges of: radius of curvature; girder and cross frame spacings; and lateral bracing configuration. Results from the study indicated that: (1) radius of curvature had the greatest influence on seismic response; (2) interior (lowest radius) girder reactions were heavily influenced by parameter variations and, in certain instances, uplift at their bearings could be a concern; (3) vertical excitation more heavily influenced bearing and cross frame seismic response; and (4) lateral bracing helped reduce seismic effects but using bracing along the entire span did not provide additional benefit over placing bracing only in bays adjacent to the supports.

Analysis of Seismic Performance Characteristics for School Buildings on the Bracing Configuration of Steel Frame System Reinforcement (철골 시스템보강의 가새 형태에 따른 학교건축물의 내진성능특성 분석)

  • Kim, Ho-Soo;Kim, So-Yeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.59-69
    • /
    • 2023
  • Recently, the occurrence frequency of earthquake has increased in Korea, and the interests for seismic reinforcement of existing school buildings have been raised. To this end, the seismic performance evaluations for school buildings that did not accomplish the seismic design are required. In particular, this study checks the eigenvalue analysis, pushover curves, maximum base shears, performance points and story drift ratios, and then analyzes the seismic performance characteristics according to bracing configuration of steel frame system reinforcement. Also, this study presents the practical field application methods through the comparison of analysis results for the seismic performance characteristics.

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

3-D Configuration Effects of Prestressing Cable Bracing Used for Retrofitting a RC Frame Subjected to Seismic Damage (RC 골조의 내진 보강을 위한 예압 가새의 3-D 배치)

  • Lee, Jin-Ho;Oh, Sang-Gyun;Hisham, El-Ganzori
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is upgraded with prestressing cable bracing. The purpose of this study is to investigate the bracing configuration effects on the 3-D building response using thee different locations of the bracing systems for the retrofitted building. Since the previous work done by the author proved that static incremental loads to collapse analysis as a substitute to dynamic non-linear time history analysis was a valid alternative tool. Thus, static load to collapse analysis is solely applied to evaluate the seismic performance parameters of both the original and upgraded buildings in this study. In results, the exterior bracing system is effective in restraining torsional behavior of the structure under seismic loads, and no sudden failure occurs in this system that enhances the ductility of the building due to the gradual change of building stiffness as the lateral load increases.

Earthquake behavior of stiffened RC frame structures with/without subsoil

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.571-585
    • /
    • 2008
  • The purpose of this study is to investigate the linear earthquake behavior of the frame structures including subsoil with different stiffening members and to compare the results of each frame considered. These comparisons are made separately for displacement, bending moments and axial forces for frames with different storey and bay numbers for the time history and the modal analyses. The results of both methods are also compared. The results of the frames with subsoil are also compared with the results of the frames without subsoil. It is concluded that all stiffening members considered in this study decrease the lateral displacement of the frame and the bending moment of the columns and increase the axial force in the columns and that configuration of the bracing members come out to be an important parameter in braced frames since the frames with the same type of bracing give different results depending on configuration. It is also concluded that, in general, the absolute maximum displacements of the frames modeled with subsoil are larger than those of the frames modeled without subsoil.

Seismic Behavior of Reinforced Concrete Moment Frames Retrofitted by Toggle Bracing System with High Density Friction Damper (토글 가새-고집적 마찰댐퍼를 설치한 철근콘크리트 모멘트 골조의 성능 평가)

  • Han, Sang Whan;Kim, Ji Yeong;Moon, Ki Hoon;Lee, Chang Seok;Kim, Hyung Joon;Lee, Kang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.133-140
    • /
    • 2014
  • The friction damper can be used for improving the seismic resistance of existing buildings. The damper is often installed in bracing members. The energy dissipation capacity of the damping systems depends on the type of the structure, the configuration of the bracing members, and the property of dampers. In Korea, there are numerous low- to mid-rise reinforced concrete moment frames that were constructed considering only gravity loads. Those frames may be vulnerable for future earthquakes. To resolve the problem, this study developed a toggle bracing system with a high density friction damper. To investigate the improvement of reinforced concrete frames after retrofit using the developed damped system, experimental tests were conducted on frame specimens with and without the damped system. The results showed that the maximum strength, initial stiffness and energy dissipation capacity of the framed with the damped system were much larger than those of the frame without the damped system.

Numerical verification of a dual system's seismic response

  • Phocas, Marios C.;Sophocleous, Tonia
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.749-766
    • /
    • 2012
  • Structural control through integration of passive damping devices within the building structure has been increasingly implemented internationally in the last years and has proven to be a most promising strategy for earthquake safety. In the present paper an alternative configuration of an innovative energy dissipation mechanism that consists of slender tension only bracing members with closed loop and a hysteretic damper is investigated in its dynamic behavior. The implementation of the adaptable dual control system, ADCS, in frame structures enables a dual function of the component members, leading to two practically uncoupled systems, i.e., the primary frame, responsible for the normal vertical and horizontal forces and the closed bracing-damper mechanism, for the earthquake forces and the necessary energy dissipation. Three representative international earthquake motions of differing frequency contents, duration and peak ground acceleration have been considered for the numerical verification of the effectiveness and properties of the SDOF systems with the proposed ADCS-configuration. The control mechanism may result in significant energy dissipation, when the geometrical and mechanical properties, i.e., stiffness and yield force of the integrated damper, are predefined. An optimum damper ratio, DR, defined as the ratio of the stiffness to the yield force of the hysteretic damper, is proposed to be used along with the stiffness factor of the damper's- to the primary frame's stiffness, in order for the control mechanism to achieve high energy dissipation and at the same time to prevent any increase of the system's maximum base shear and relative displacements. The results are summarized in a preliminary design methodology for ADCS.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

Damper Configuration for Seismic Performance Improvement of Heavy Facilities with Frictional Sliding Behavior inside Building (마찰 슬라이딩 거동을 보이는 건물 내 중량 설비의 내진성능 향상을 위한 감쇠기 연결 방안)

  • Ok, Seung-Yong;Park, Kwan-Soon;Lee, Jeeho
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study proposes a new damper configuration for seismic performance improvement of heavy sliding facilities inside a building. For this purpose, we deal with two connection types of control system, and the parametric study has been performed to investigate their comparative seismic performances according to the variations of the control capacity. In order to simulate the seismic responses of the proposed system, we employed a recently-developed seismic response analysis method that can deal with the two-mass system with nonlinear frictional sliding behavior. The numerical results demonstrate that the typical method of diagonal bracing damper connection can exhibit effective control performance both on structure and the heavy sliding facilities, whereas the structure-facilities connection method does not show any control effect on both responses. On the other hand, the typical method has some limitations that it can adversely cause excessive sliding of the facilities, depending upon the frequency characteristics of structure and earthquake. On the contrary, the structure-facilities connection method is very effective in reducing the sliding displacement of the heavy facilities, even with small amount of control capacity. Thus, the following potential expectations can be inferred from these results: The typical diagonal bracing damper connection method will have some promising benefits in controlling the sliding facilities inside the building as well as the building itself, and the structure-facilities connection method can be a cost-effective way of protecting the internal heavy important facilities inside the structure already designed with sufficient seismic performance.

Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading

  • Mohammadi, Masoud;Kafi, Mohammad A.;Kheyroddin, Ali;Ronagh, Hamid R.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.163-177
    • /
    • 2020
  • Concentrically Braced Frames (CBFs) are commonly used in the construction of steel structures because of their ease of implementation, rigidity, low lateral displacement, and cost-effectiveness. However, the principal disadvantage of this kind of braced frame is the inability to provide deformation capacity (ductility) and buckling of bracing elements before yielding. This paper aims to present a novel Composite Buckling Restrained Fuse (CBRF) to be utilized as a bracing segment in concentrically braced frames that allows higher ductility and removes premature buckling. The proposed CBRF with relatively small dimensions is an enhancement on the Reduced Length Buckling Restrained Braces (RL-BRBs), consists of steel core and additional tensile elements embedded in a concrete encasement. Employing tensile elements in this composite fuse with a new configuration enhances the energy dissipation efficiency and removes the tensile strength limitations that exist in bracing elements that contain RL-BRBs. Here, the optimal length of the CBRF is computed by considering the anticipated strain demand and the low-cyclic fatigue life of the core under standard loading protocol. An experimental program is conducted to explore the seismic behavior of the suggested CBRF compare with an RL-BRB specimen under gradually increased cyclic loading. Moreover, Hysteretic responses of the specimens are evaluated to calculate the design parameters such as energy dissipation potential, strength adjustment factors, and equivalent viscous damping. The findings show that the suggested fuse possess a ductile behavior with high energy absorption and sufficient resistance and a reasonably stable hysteresis response under compression and tension.