• Title/Summary/Keyword: Brace position

Search Result 17, Processing Time 0.026 seconds

Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm (유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계)

  • Lee, Joon-Ho;Kim, Yu-Seong;Sung, Eun-Hee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.

A Study on the Development of Floor-Fixed Standpipe Sway Brace for Narrow Space (협소공간전용 바닥고정형 입상관 흔들림방지버팀대 개발에 관한 연구)

  • Jin, Se-Young;Choi, Su-Gil;Park, Sang-Min;Yeon, Tae-Young;Kim, Chang-Su;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • This paper proposes a solution to the problems of constructing and installing sway braces for existing standpipes in narrow spaces and pits. The study develops a floor-fixed sway brace for a narrow space that can support the ground area under horizontal seismic loads (X-axis, Y-axis) as well as vertical seismic loads (Z-axis). The results of structural analysis using SolidWorks simulation showed that the eccentric load was generated in the first design according to the anchored position along the vertical direction, and the problem of exceeding the allowable stress of the material along the horizontal and vertical directions. In the second design model, deformation caused by the eccentric load along the vertical direction, similar to the first design model, did not occur. The maximum strain rate was 0.17%, which is approximately 12.84% less than the first design model (Maximum strain rate of 13.01%). It was confirmed that the structural stability and durability improved. Compressive and tensile load testing of the prototypes showed that all of them meet the performance criteria of the standard.

Echinoderes lanceolatus, a New Kinorhynch from Korea (Kinorhyncha, Cyclorhagida, Echinoderidae) (동문동물 1신종, 표창자라목벌레 (Echinoderes lanceolatus)의 기재(동문동물문, 원통자라목벌레목, 가시자라목벌레과))

  • Chang, Cheon-Young;Song, Young-Hee
    • Animal Systematics, Evolution and Diversity
    • /
    • v.18 no.2
    • /
    • pp.203-211
    • /
    • 2002
  • A new kinorhynch species belonging to the genus Echinoderes is described on the basis of the materials from the subtidal sediments and various macroalgae in the south and east coast of Korea. Echinoderes lanceolatus n. sp. is characteristic in having the subcuticular scars in subventral position on segment 3 and incomplete midventral articulation on segment 4, the middorsal spines a little shorter than the corresponding segments, the ‘brace-shaped’muscle scars at sternal plates of segments 9 and 10 in females, the flat posterior margin of terminal ventral plates and the lanceolate terminal tergal extension.

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Pressure Sore and Necrosis over the lateral malleolus of the Ankle (족근 관절 외과 부위의 압박궤양과 괴사)

  • Park, In-Heon;Song, Gyung-Won;Shin, Sung-Il;Lee, Jin-Young;Suh, Dong-Hyun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Pressure sores are an ulceration and necrosis of the skin and underlying tissue usually occur after prolonged or repeated pressure by interruption of blood flow from the small. vessels to the skin and deep tissue. The management of pressure sores is mostly difficult and requires prolonged hospitalization or repeated surgical interventions with a high recurrence rate. In this article we reviewed 14 cases of National Pressure Ulcer Advisory Pannel staging III, IV over the lateral malleolar area of the ankle in 2 years period from January 1999 to October 2001. The pressure over lateral malleolar area was mainly due to unique Korean sitting position with cross legs at flexed hips and knees or supine position of patient with external rotation of low extremity. Male to female ratio was 11: 3 and ages were between 36 and 83 (mean age: 67.1 years). Associated diseases were DM(7 cases), Hemiparesis caused by CVA(2 cases), Liver cirrhosis(2 cases), disarticulation of opposite hip due to squamous cell ca.(1 case), Intertrochanteric Fx.(1 case). Wound cultures reported Staphylococus, Pseudomonas and others. Abnormally elevated ESR and CRP were seen in 6 cases. Operative treatments were irrigation and debridement, direct closure with gravity drainage and skin grafting. The most important aspect of pressure sore treatment is pressure relief of the lateral malleolar area. Pressure-relieving Cast or Brace was helpful for local management and preventing recurrence.

  • PDF

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Comparison of the Effects of Dynamic Postural Stability Training Versus Soft Ankle Bracing on Multiple Hop Performance in Participants With Functional Ankle Instability (기능적 발목 불안정성을 가진 대상자에게 동적 자세 안정성 훈련과 연성 발목 보조기가 다중 한발 뛰기 수행에 미치는 효과 비교)

  • Cha, Youn-sang;Park, Kyue-nam
    • Physical Therapy Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Background: The multiple hop test is an active performance test that has been commonly used to assess individuals with functional ankle instability. Previous studies have suggested that insufficiency of dynamic postural stability and passive stability during dynamic activities can have an influence on performance in the multiple hop test. However, no study has investigated the effects of dynamic postural stability training and ankle bracing on multiple hop test performance in individuals with functional ankle instability. Objects: The purpose of this study was to compare the immediate effects of dynamic postural stability training versus ankle bracing in the performance of the multiple hop test for participants with functional ankle instability. Methods: Twenty-nine participants with functional ankle instability who scored below 24 in the Cumberland Ankle Instability Tool were selected. The participants were randomly divided into two groups: a dynamic postural stability training group (n1=14) and an ankle bracing control group ($n_2=15$). The multiple hop tests were performed before and after applying each intervention. Dynamic postural stability training was performed using visual-feedback-based balance-training equipment; participants in this group were asked to perform a heel raise in a standing position while watching the centering of their forefoot pressure to prevent excessive ankle inversion. Ankle bracing was applied in the control group. Results: When comparing the pre- and post-intervention period for both groups, both methods significantly improved the results of the multiple hop test (p<.05). However, no significant differences were shown between the dynamic postural stability training and ankle bracing groups (p>.05). Conclusion: Both dynamic postural stability training and ankle bracing showed significant improvement (2.85 seconds and 2.05 seconds, respectively) in test performance. Further study is needed to determine the long-term effects of dynamic postural stability training and to determine whether insufficient dynamic postural stability is a causative factor for functional ankle instability.