• Title/Summary/Keyword: Boyle's Law

Search Result 23, Processing Time 0.022 seconds

The Effects of the Level of Enrichment for Analogies upon Students' Mapping and Conceptual Understanding in Concept Learning about Boyle's Law (보일의 법칙에 대한 개념 학습에서 비유의 부연 수준이 학생들의 대응 관계 이해 및 개념 이해에 미치는 영향)

  • Kim, You-Jung;Kim, Kyung-Sun;Noh, Tae-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.248-256
    • /
    • 2010
  • This study investigated the effects of the level of enrichment for analogies upon students' mapping, conceptual understanding, and the types of mapping errors in concept learning about Boyle's Law. Analogical reasoning ability test was administered and the score was used as a blocking variable. Three types (simple, enriched, and extended analogies) of learning materials according to the level of enrichment for analogies were studied by randomly assigned middle school students, and a conceptions test and a mapping test were administered immediately. The retention tests of both were administered four weeks later. Analyses of the results revealed that there was no main effect in the level of enrichment for analogies, but there was interaction effect with analogical reasoning ability in the post test on mapping. And the score of enriched analogy group was significantly higher than those of simple analogy group, but the score differences among three groups were not significant in the retention test on conceptual understanding. The frequency of the total mapping errors in the simple analogy group was the highest, and the frequencies of most types of mapping errors in the enriched and the extended analogy groups were less than those in the simple analogy group. There were also some differences in the frequencies of mapping errors with respect to the level of analogical reasoning ability. Therefore, these results will help science teachers plan and practice instructions using analogy.

The Influences of Situational Interest, Attention, and Cognitive Effort on Drawing as a Method to Assist Students to Connect and Integrate Multiple External Representations (외적 표상들 간의 연계와 통합을 촉진하는 방안으로서의 그리기에 미치는 상황 흥미, 주의집중, 인지적 노력의 영향)

  • Kang, Hun-Sik;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.4
    • /
    • pp.510-517
    • /
    • 2006
  • This study investigated the influences of situational interest, attention, and cognitive effort on drawing as a method to assist students to connect and integrate multiple external representations provided in learning chemical concepts. Seventh graders (N=178) at two coed middle schools were taught about the "Boyle's Law" and the "Charles's Law" for two class hours through drawing. They observed macroscopic phenomena through demonstrations. After these observations, they drew their mental model from the external verbal representation, and then compared their drawings with external visual representation. The tests assessing situational interest, attention, cognitive effort, and conceptual understanding were administered as post-tests. Correlation and path analyses supported a causal model which situational interest had a positive direct effect on attention to the drawing. Attention led to conceptual understanding directly as well as through cognitive effort. These results suggest that situational interest may be induced by drawing first of all, and attention and cognitive effort may be direct causes of conceptual understanding in drawing. Educational implications are discussed.

The Effects of the Prescribed Instructional Strategy for Reducing Students' Connecting Errors in Learning Chemistry Concepts with Multiple External Representations (다중 표상을 활용한 화학 개념 학습에서 학생들의 연계 오류 감소를 위한 처방적인 교수 전략의 효과)

  • Kang, Hun-Sik;Kim, You-Jung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.675-684
    • /
    • 2008
  • This study investigated the effects of the prescribed instructional strategy for reducing students' connecting errors in learning chemistry concepts with multiple external representations by students' field independence-dependence. Seventh graders (N=126) at a coed middle school were assigned to control and treatment groups. The students learned "Boyle's Law" and "Charles's Law" for two class periods. Results revealed that the students in the treatment group scored significantly higher than those in the control group in a conception test. The scores of the treatment group were significantly higher than those of the control group in a motivational learning test, especially in 'attention' of the test. However, there was no significant interaction between the instruction and students' field independence-dependence in the two tests. Most students in the treatment group perceived the instruction positively in cognitive and motivational aspects.

Analysis of Connection Errors by Students' Field Independence-Dependence in Learning Chemistry Concepts with Multiple External Representations (다중 표상을 활용한 화학 개념 학습에서 학생들의 장독립성-장의존성에 따른 연계 오류 분석)

  • Kang, Hun-Sik;Lee, Jong-Hyun;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.5
    • /
    • pp.471-481
    • /
    • 2008
  • This study investigated connecting errors by students' field independence-dependence in learning chemistry concepts with multiple external representations in current science textbooks. Seventh graders (N=196) at a middle school were assigned to the BL and CL groups, which were respectively taught "Boyle's Law" and "Charles's Law." A field independence-dependence test was administered. After learning the target concept with text and picture emphasizing the particulate nature of matter, a connecting test was also administered. Five types of connecting errors were identified: Insufficient connection, misconnection, rash connection, impossible connection, and failing to connect. 'Failing to connect,' 'Misconnection,' and 'Rash connection' were found to be the frequent types of connecting errors regardless of the target concepts. The frequencies and percentages of the types of connecting errors were not significantly different between the field independent and field dependent students. Educational implications of these findings are discussed.

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column (진동수주형 파력발전 시스템을 탑재한 압축공기 주입식 방파제의 동적거동 해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Yook, Sung-Min;Jung, Yeong-Hoon;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.225-243
    • /
    • 2014
  • As the economic matters are involved, applying the WEC, which is used for controlling waves as well as utilizing the wave energy on existing breakwater, is preferred rather than installing exclusive WEC. This study examines the OWC mounted on a pressurized air chamber floating breakwater regarding the functionality of both breakwater and wave-power generation. In order to verify the performance as a WEC, the velocity of air flow from pressurized air chamber to WEC has to be evaluated properly. Therefore, numerical simulation was implemented based on BEM from linear velocity potential theory as well as Boyle's law with the state equation to analyze pressurized air flow. The validity of the obtained values can be determined by comparing the previous results from numerical analysis and empirically obtained values of different shapes. In the actual numerical analysis, properties of wave deformation around OWC system mounted on fixed type and floating type breakwaters, motions of the structure with air flow velocities are investigated. Since, the wind power generating system can be hybridized on the structure, it is expected to be applied on complex power generation system which generates both wind and wave power energy.

Electro-Optical Characteristics of an ICP Light Source Depending on Driving Temperature and Length of Discharge Tube (구동 온도와 방전관 길이에 따른 ICP 광원의 전기.광학적 특성)

  • Yim, Youn-Chan;Park, Dae-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.107-113
    • /
    • 2008
  • We investigated the electro-optical characteristics of an ICP(Inductively Coupled Plasma) light source depending on driving temperature, and length of discharge tube. An electro-optical stability of a sample at operating was measured to see a steady state of a sample. In this results, we can see that a stability of power loss and luminous flux of a sample at operating of upper 70[min] was 1.45[%1 and 0.36[%]. We measured the optical characteristics of a sample in a thermal chamber operated at a specific temperature divided into 5 steps. While luminance increased with temperature increasing, the decrement of luminance a eared at u or $46.7[^{\circ}C]$. According to Parchen's and Boyle-Charles' law, we can speculate that a pressure was increased and a higher voltage was needed but a ballaster having a rating power can't support a higher voltage corresponding to a pressure change, 0.02[Torr] at $46.7[^{\circ}C]$. Moreover, we measured an a lied power and current of samples depending to a various length of a discharge tube.

Analysis of the Pre-service Chemistry Teachers' Cognition of the Nature of Model in the Design and Development Process of Models Using Technology: Focusing on Boyle's Law (테크놀로지를 활용한 모델의 설계와 개발 과정에서 나타난 예비화학교사의 모델의 본성에 대한 인식 분석: 보일 법칙을 중심으로)

  • Na-Jin Jeong;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.378-392
    • /
    • 2023
  • The purpose of this study is to analyze the pre-service chemistry teachers' cognition of the nature of model in process of designing and developing models using technology. For this purpose, 19 pre-service chemistry teachers' in the 3rd grade of a education college located in the central region observe experimental phenomena related to Boyle's law presented in the 7th grade science textbook and researchers required the design and development of a model related to the observed experimental results using technology. Based on previous studies, the nature of model were classified into two aspect: 'Representational aspect' and 'Explanatory aspect'. The 'Representational aspect' was classified into 'Representation', 'Abstraction', and 'Simplification', and the 'Explanatory aspect' was classified into 'Analysis', 'Interpretation', 'Reasoning', 'Explanation', and 'Quantification'. The pre-service chemistry teachers' cognition were analyzed by the classification. As a result of the study, the 'Representation' of the 'expressive aspect' was uniformized in the form of space that changes in volume, and the pressure was expressed as the Brightness inside the cylinder or frequency of color change of particles for 'Abstraction'. In the case of 'Simplification', the particle collision was expressed as a perfectly elastic collision, but there was a group that could not simply indicate the type of particle. In the 'Explanatory aspect', in the case of 'Analysis', volume was classified as a manipulated variable, and in the case of 'Interpretation', most groups analyzed the change in pressure through the collision of gas particles. However, the cognition involved in 'Reasoning' was not observed much. In the case of 'Explanation', there were groups that did not succeed in explanation because the area where the particles collided was not set or incorrectly set, and in the case of 'Quantification', there was a group that formulated the number of collisions per unit time, and on the contrary, there was a group that could not quantify the number of collisions because they could not be expressed in numbers.

Drawing and Writing as Methods to Assist Students in Connecting and Integrating External Representations in Learning the Particulate Nature of Matter with Multiple Representations (물질의 입자적 성질에 대한 다중 표상 학습에서 외적 표상들 간의 연계와 통합을 촉진시키는 방안으로서의 그리기와 쓰기)

  • Kang, Hun-Sik;Kim, Bo-Kyung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.4
    • /
    • pp.533-540
    • /
    • 2005
  • This study investigated the effects of drawing and writing as methods to assist students in connecting and integrating multiple external representations provided in learning the particulate nature of matter. Seventh graders (N=224) at a coed middle school were assigned to a control group, a drawing group, and a writing group. The students were taught about "Boyle's Law" and "Charles's Law" for two class periods. Students observed macroscopic phenomena through experiments. After this observation, students in the control group learned the topic with both external visual and verbal representations simultaneously. Students in the drawing group drew their mental model from the external verbal representation provided, and then compared their drawing with external visual representation. Students in the writing group wrote their mental model from the external visual representation provided, and then compared their writing to the external verbal representation. The two-way ANCOVA results revealed that the scores of a conception test for the writing group were significantly higher than those for the control group. While the drawing group performed better than the control group, the difference is relatively smaller. There were no significant interactions between the instruction and spatial visualization ability in the scores of the conception test. Most students perceived the writing or drawing activities helpful in understanding the concepts, and a few students responded that the writing or drawing activity was interesting. Educational implications were discussed.

The Instructional Effect of Varying Visuals in Drawing and Writing Applied to Learning with Multiple Representations (다중 표상 학습에 적용한 그리기와 쓰기에서 시각정 정보의 형태에 따른 교수 효과)

  • Kang, Hun-Sik;Lee, Sung-Mi;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.3
    • /
    • pp.367-375
    • /
    • 2006
  • This study investigated the effects of varying visuals in drawing and writing as methods to assist students in connecting and integrating multiple external representations provided in learning the particulate nature of matter. Seventh graders (N=233) at a coed middle school were assigned to control, static drawing (SO), dynamic drawing (DD), static writing (SW), and dynamic writing (DW) groups. The students were taught about "Boyle's Law" and "Charles's Law" for two class periods. Two-way ANCOVA results revealed that the scores of a conception test for the two drawing (SD, DD) groups and the two writing (SW, DW) groups were significantly higher than those for the control group. Within the writing groups, students of lower spatial visualization ability in the DW group scored significantly higher than those in the SW group. However, no significant differences were found in the scores of the conception test for the two drawing (SD, DD) groups regardless of students' visualization ability. Researchers also found that most students in both DD and DW groups had respectively positive perceptions of dynamic visuals in drawing or writing.