• Title/Summary/Keyword: Box-mill Wastewater

Search Result 4, Processing Time 0.022 seconds

The Treatment of Box-mill Wastewater Using Aerobic Cometabolism Process - Practical Plant Test - (호기성 공동대사작용에 의한 판지폐수처리 - 현장 적용 테스트 -)

  • Cho, Yong Duck;Lee, Sang Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.128-137
    • /
    • 2006
  • This study aims at developing the practical technology in the treatment of box-mill wastewater using the aerobic co-metabolism principle. The conventional activated sludge method exhibited the removal efficiency of $TBOD_5$ and $TCOD_{Mn}$ as 30~50% and 40~50%, respectively. Color was rather increased by 30~130% because the conventional treatment under the aerobic condition did not induce the conversion of molecular structure of dyeing agents. Meanwhile, when the aerobic co-metabolism principle was applied to the same wastewater, the removal efficiency of $TBOD_5$ and $TCOD_{Mn}$ were obtained as 92~97% and 90~94%, respectively. In particular, color was significantly reduced down to 65~85%. The enhancement of treatment efficiency was ascribed to occur not only that the non-degradables were converted to the second substrates, but also that the enzyme activity was increased as MLVSS was kept 3000mg/l or more with the first substrates injected.

Effect of Recalcitrant Organics on Bio-kinetic Coeffcient and Biodegradable in Box-mill Wastewater (판지공장 폐수 중 난분해성 유기물질이 동력학적 계수 및 생분해에 미치는 영향)

  • Cho, Yong Duck;Lee, Sang Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2006
  • The research aims to provide the basic data for practical applications by correlating the bio-kinetic coefficients with the load of recalcitrant organic matter in box-mill wastewater. The activated sludge process was employed to a Wastewater disposal plant in an industrial setting, increase of consequently leading to the organic load. The parameter values derived by Monod-kinetic analysis were as follows:specific substrate removal rate $K_{max}=0.17day^{-1}$, half saturation constants $K_s=60.37mg/l$, decay coefficient $K_d=0.142day^{-1}$, microbial yield coefficient y = 0.388mg/mg, and max specific growth rate ${\mu}_{max}=0.006day^{-1}$. In view of biodegradability, the $TCOD_{Mn}/TBOD_5$ ratios of inflow and outflow were 1.07 and 1.41, and the $SCOD_{Mn}/SBOD_5$ ratios of inflow and outflow were 1.10 and 1.50, respectively. The higher $TCOD_{Mn}/TBOD_5$ ratio of outflow indicated that metabolites of a microorganism have accumulated in the cells.

Treatment of Rice Mill Wastewater Using Continuous Electrocoagulation Technique: Optimization and Modelling

  • Karichappan, Thirugnanasambandham;Venkatachalam, Sivakumar;Jeganathan, Prakash Maran;Sengodan, Kandasamy
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.761-768
    • /
    • 2013
  • Removal of COD and TSS from rice mill wastewater was investigated using continuous electrocoagulation method (CEC). The electrical energy consumption (EEC) of the process was also examined in order to evaluate the economic viability. The Box-Behnken statistical experiment design (BBD) and response surface methodology (RSM) were used to investigate the effects of major operating variables. Initial pH, current density, electrode distance and flow rate were selected as independent variables in BBD while COD removal, TSS removal and EEC were considered as the response functions. The predicted values of responses obtained using the response function was in good agreement with the experimental data. Optimum operating conditions were found to be pH of 7, current density of 15 mA $cm^{-2}$, electrode distance of 5 cm and flow rate of 70 ml/min. Under these conditions, greater than 89% removal of COD and TSS were obtained with EEC value of 7 KWh.

Bio-kinetic and Design Analysis for Box-mill Wastewater Treatment Using Anoxic Activated Sludge Process (무산소 활성오니공정을 이용한 판지공장 폐수처리의 동력학적 해석 및 설계분석)

  • Cho, Yong-Duck;Lee, Sang-Wha;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1090-1097
    • /
    • 2006
  • The anoxic activated sludge process was applied to the treatment of industrial box-mill wastewater, which exhibited the high removal efficiencies of $90{\sim}94%$$ TCOD_{Mn}$ and $58{\sim}81%$ Color. For the design of industrial anoxic activated sludge process, Monod bio-kinetic coefficients of box-mill wastewater were estimated as follows: $K_{max}$(maximum specific substrate removal rate)=0.52 $day^{-1}$, $K_s$(half saturation constant)=314 mg/L, $K_d$(decay coefficient)=0.274 $day^{-1}$, y(microbial yield coefficient)=0.908 mg/mg, and ${\mu}_{max}$(maximum specific growth rate)=0.472 $day^{-1}$. Space loading factors for the design analysis were practically determined as the values of F/M ratio=$0.043{\sim}0.07$ kg-$TCOD_{Mn}$/kg-SS-day, BOD space loading=$0.18{\sim}0.3$ kg-$TCOD_{Mn}/m^3-day$, and ${\theta}_x=6.8{\sim}26.4$ day when considering the relationship of these loading factors with growth dynamics of microorganisms, the F/M ratio that is inversely proportional to ${\theta}_x$ should be equivalent to ${\mu}_{max}$ in units, but exhibited the significant difference between theses two values. Therefore, it is considered that high safety factors are requested in the design of anoxic activated sludge process that is based on Monod bio-kinetics of microorganism.