• Title/Summary/Keyword: Box-behnken

Search Result 196, Processing Time 0.027 seconds

Biological Degradation of Cypermethrin by Marine Bacteria, Cellulophaga lytica DAU203 (해양 세균 Cellulophaga lytica DAU203에 의한 사이퍼메트린의 생물학적 분해)

  • Lee, Je-Hoon;Lee, Yong-Suk;You, Ah-Young;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.483-487
    • /
    • 2018
  • Cypermethrin, a commonly used domestic and agricultural pyrethroid pesticide, is widely considered detrimental to the environment and to many organisms because of its residual property and toxicity. Cellulophaga lytica DAU203, isolated from coastal sediment, was chosen because it degrade cypermethrin. Cellulophaga lytica DAU203 effectively degraded cypermethrin, as the utilized carbon source and substrate, in a mineral salt medium. Effective factors, such as carbon source, nitrogen source, initial pH, and temperature, for cypermethtin biological degradation by Cellulophaga lytica DAU203 were analyzed by one factor at a time method. Temperature ($22{\sim}42^{\circ}C$), initial pH (5~9), and yeast extract concentration (0.1~2.5%[w/v]) were selected as the three most important factors. There were optimized at $33.4^{\circ}C$, pH 7.7, and 2.4%(w/v) by response surface methodology, respectively. The Box- Behnken design consisting of 46 experimental runs with three replicates was used to optimize the independent variables which significantly influenced the cypermethrin biological degradation. This model for cypermethrin degradation by Cellulophaga lytica DAU203 is highly significant (p<0.05). Under the optimized condition, Cellulophaga lytica DAU203 degraded approximately 83.7 % of the cypermethrin within 5 days. These results suggest that Cellulophaga lytica DAU203 may be useful for the biological degradation of cypermethrin in cypermethrin-contaminated environments.

3-Level Response Surface Design by Using Expanded Spherical Experimental Region (확장된 구형설계를 이용한 반응표면설계)

  • Kim, Ha-Yan;Lee, Woo-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.215-223
    • /
    • 2012
  • Response surface methodology(RSM) is a very useful statistical techniques for improving and optimizing the product process. By this reason, RSM has been utilized extensively in the industrial world, particularly in the circumstances where several product variables potentially influence some quality characteristic of the product. In order to estimate the optimal condition of product variables, an experiment is being conducted defining appropriate experimental region. However, this experimental region can vary with the experimental circumstances and choice of a researcher. Response surface designs can be classified, according to the shape of the experimental region, into spherical and cuboidal. In the spherical case, the design is either rotatable or very near-rotatable. The central composite design(CCD)s widely used in RSM is an example of 5-level and spherical design. The cuboidal CCDs(CCDs with ${\alpha}=1$) is appropriate when an experimental region is cuboidal but this design dose not satisfy the rotatability as it is not spherical. Practically, a 3-level spherical design is often required in the industrial world where various level of experiments are not available. Box-Behnken design(BBD)s are a most popular 3-level spherical designs for fitting second-order response surfaces and satisfy the rotatability but the experimental region does not vary with the number of variables. The new experimental design with expanded experimental region can be considered if the predicting response at the extremes are interested. This paper proposes a new 3-level spherical RSM which are constructed to expand the experimental region together with number of product variables.

Effects of Temperature and Time for Heating and Filler Content on the Activities of Xylanase, Cellulase and Amylase in Slaughterhouse Rumen Content (가열온도, 가열시간 및 부형제의 첨가량이 도축 반추위 내용물의 자일란, 셀룰로오스 및 전분 분해효소 활성에 미치는 영향)

  • Won, Mi Young;Lee, Do Hyung;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This study was conducted in order to develop slaughterhouse rumen content (SRC) as a potential feed additive. The moisture content of SRC can reach 80%, and therefore an appropriate dewatering process is required before it can be used. In this study, the effects of heating temperature, heating time, and filler content during the dewatering process on the activity of various enzymes in SRC were investigated. The Box-Behnken experimental design was employed, involving a total of 45 experimental runs, consisting of three variables (heating time, heating temperature, and filler content) with three levels per variable (12, 30 and 48 hr; 60, 75 and $90^{\circ}C$; 12, 22.5 and 33% for heating time, heating temperature, and filler content, respectively). For enzyme activities, xylanase, cellulase, and amylase were examined, and the results were subjected to an analysis of variance. Heating time, heating temperature and filler content had significant effects on the activity of each enzyme (p<0.05). Cellulase and amylase activities decreased (p<0.05) at elevated heating temperatures, whereas xylanase was reasonably stable around $90^{\circ}C$. The activities of all enzymes decreased (p<0.05) with increased heating time. Optimum filler contents for xylanase, cellulase, and amylase activities were 22.5, 12 and 33%, respectively. However, optimum conditions for all variables that simultaneously maximize the activity of all three enzymes could not be ascertained in this study. Nevertheless, the results from the current study can be useful as basic information for the development of SRC as a feed additive enriched with improved major enzymes for livestock feed digestion.

Media Optimization of Corynebacterium glutamicum for Succinate Production Under Oxygen-Deprived Condition

  • Jeon, Jong-Min;Thangamani, Rajesh;Song, Eunjung;Lee, Hyuk-Won;Lee, Hong-Weon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2013
  • Corynebacterium glutamicum is one of the well-studied industrial strain that is used for the production of nucleotides and amino acids. Recently, it has also been studied as a possible producer of organic acids such as succinic acid, based on its ability to produce organic acids under an oxygen deprivation condition. In this study, we conducted the optimization of medium components for improved succinate production from C. glutamicum under an oxygen deprivation condition by Plackett-Burman design and applied a response surface methodology. A Plackett-Burman design for ten factors such as glucose, ammonium sulfate, magnesium sulfate, potassium phosphate ($K_2HPO_4$ and $KH_2PO_4$), iron sulfate, manganese sulfate, biotin, thiamine, and sodium bicarbonate was applied to evaluate the effects on succinate production. Glucose, ammonium sulfate, magnesium sulfate, and dipotassium phosphate were found to have significant influence on succinate production, and the optimal concentrations of these four factors were sequentially investigated by the response surface methodology using a Box-Behnken design. The optimal medium components obtained for achieving maximum concentration of succinic acid were as follows: glucose 10 g/l, magnesium sulfate 0.5 g/l, dipotassium phosphate ($K_2HPO_4$) 0.75 g/l, potassium dihydrogen phosphate ($KH_2PO_4$) 0.5 g/l, iron sulfate 6 mg/l, manganese sulfate 4.2 mg/l, biotin 0.2 mg/l, thiamine 0.2 mg/l, and sodium bicarbonate 100 mM. The parameters that differed from a normal BT medium were glucose changed from 40 g/l to 10 g/l, dipotassium phosphate ($K_2HPO_4$) 0.5 g/l changed to 0.75 g/l, and ammonium sulfate ($(NH_4)_2SO_4$) 7 g/l changed to 0 g/l. Under these conditions, the final succinic acid concentration was 16.3 mM, which is about 1.46 fold higher than the original medium (11.1 mM) at 24 h. This work showed the improvement of succinate production by a simple change of media components deduced from sequential optimization.

Optimization of the preparation method of citron (Citrus junos Sieb.) beverage containing hibiscus using response surface methodology (반응표면 분석법을 이용한 히비스커스 첨가 유자 음료 제조의 최적화)

  • Lee, Chang Joo;Lee, Woo Jin;Park, Jong Seok;Kim, Sung Woo;Jung, Sung Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.187-194
    • /
    • 2021
  • This study aimed to optimize the preparation method of citron (Citrus junos Sieb.) beverages with hibiscus using response surface methodology (RSM). The experimental conditions were established using a central composite design with three independent variables as follows: ratios of citron (40~60%), citric acid (0.34~0.94%), and hibiscus (0.3~0.7%). The results indicate that an increase in the citron ratio contributed to increased sweetness and as the concentration of citron and hibiscus increased, the brightness of the citron beverage decreased and the yellowness increased. The citron ratio showed a significant correlation with the ABTS radical scavenging capacity. Among the 15 experimental groups, 4 representative samples showing statistical significance were selected, and sensory tests were performed, in comparison with commercially available products. As a result of the sensory test, four beverages prepared with the selected recipes showed higher preference than commercial beverages, and optimal recipe conditions were 40% citron, 0.34% citric acid, and 0.5% hibiscus.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.