• Title/Summary/Keyword: Box-behnken

Search Result 194, Processing Time 0.033 seconds

Application of Response Surface Methodology for the Optimization of Process in Food Technology (반응표면분석법을 이용한 식품제조프로세스의 최적화)

  • Sim, Chol-Ho
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.97-115
    • /
    • 2011
  • A review about the application of response surface methodology in the optimization of food technology is presented. The theoretical principles of response surface methodology and steps for its application are described. The response surface methodologies : three-level full factorial, central composite, Box-Behnken, and Doehlert designs are compared in terms of characteristics and efficiency. Furthermore, recent references of their uses in food technology are presented. A comparison between the response surface designs (three-level full factorial, central composite, Box-Behnken and Doehlert design) has demonstrated that the Box-Behnken and Doehlert designs are slightly more efficient than the central composite design but much more efficient than the three-level full factorial designs.

Preparation of Waste Cooking Oil-based Biodiesel Using Microwave Energy: Optimization by Box-Behnken Design Model (마이크로웨이브 에너지를 이용한 폐식용유 원료 바이오디젤의 제조: Box-Behnken 설계를 이용한 최적화)

  • Lee, Seung Bum;Jang, Hyun Sik;Yoo, Bong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.746-752
    • /
    • 2018
  • In this study, an optimized process for the waste cooking oil based biodiesel production using microwave energy was designed by using Box-Behnken design model. The process variables were chosen as a mole ratio of the methanol to oil, microwave power, and reaction time. Fatty acid methyl ester (FAME) content was then measured. Through the results of basic experiments, the range of optimum operation variables for the Box-Behnken design model, such as the methanol/oil mole ratio and reaction time, were set as between 8 to 10 and between 4 to 6 min, respectively. Ranges of the microwave power were set as from 8 to 12 W/g for 1.30 mg of KOH/g, acid value, while from 10 to 14 W/g for 2.00 mg of KOH/g, acid value. The optimum methanol/oil mole ratio, microwave power, and reaction time were reduced to 7.58, 10.26 W/g, and 5.1 min, respectively, for 1.30 mg KOH/g of acid value. Also, the optimum methanol/oil mole ratio, microwave power, and reaction time were 7.78, 12.18 W/g, and 5.1 min, respectively, for 2.00 mg KOH/g of acid value. Predicted FAME contents were 98.4% and 96.3%, with error rates of less than 0.3%. Therefore, when the optimized process of biodiesel production using microwave energy was applied to the Box-Behnken design model, the low error rate could be obtained.

Preparation of Cosmeceuticals Containing Flos Sophorae Immaturus Extracts: Optimization Using Box-Behnken Design Model (회화나무꽃 추출물이 함유된 Cosmeceuticals의 제조: Box-Behnken 설계모델을 이용한 최적화)

  • Yoo, Bong-Ho;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.404-410
    • /
    • 2020
  • In this study, the stability criteria of cosmeceuticals emulsion containing Flos Sophorae Immaturus extracts was established using the Box-Behnken design model (BBD-RSM). As optimization conditions of the emulsification using the BBD-RSM, the amount of surfactant and additive, and emulsification time and speed were used as quantitative factors while mean droplet size (MDS), viscosity and emulsion stability index (ESI) were used as reaction values. According to the result of BBD-RSM, optimum conditions for the emulsification were as follows; the emulsification time and speed of 17.8 min and 5505 rpm, respectively and amounts of the emulsifier and additive of 2.28 and 1.05 wt.%, respectively. Under these conditions, the MDS, viscosity, and ESI after 7 days from the reaction were estimated as 1875.5 nm, 1789.7 cP, and 93.8%, respectively. The average error value from our actual experiments for verifying the conclusions was below 5%, which is mainly due to the fact that the BBD-RSM was applied to the optimized cosmeceuticals emulsification.

Optimal Design of the Rotor Structure by using Box-Behnken Method for IPMSM (Box-Behnken법을 이용한 매입형 영구자석 동기전동기의 회전자 구조 최적설계)

  • Han, Jung-Ho;Kim, Won-Ho;Jang, Ik-Sang;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Jae-Jun;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.949-950
    • /
    • 2011
  • There are various ways of optimizing rotor design of Interior Permanent Magnet Synchronous Motors(IPMSM). In this paper, the best optimized design value was found by varying the Bridge thickness of PM in the rotor and changing Rib. The set design values were torque, 5 harmonics, 7 harmonics, and safety factor. Also, in order to make practical design value easily and quickly for optimization, Box-Behnken of Response Surface Method(RSM) method was used. Therefore, IPMSM resulted an optimized design model with high torque, low harmonics, and constant value of safety factor.

  • PDF

The Study of Statistical Optimization of NDMA Treatment using UV-Process (UV공정을 이용한 NDMA처리 통계적 최적화 연구)

  • Song, Won-Yong;Chang, Soon-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.96-101
    • /
    • 2009
  • The aim of this research was to apply experimental design methodology to optimizetion the photolytic degradation of N-nitrosodimethylamine (NDMA). Reactions were mathematically described as a function of parameters such as pH, initial NDMA concentration, and UV intensity using the Box-Behnken method. The results showed that the responses of NDMA removal (%) in photolysis were significantly affected by the synergistic effect of linear term of pH, initial NDMA concentration and UV intensity. The application of Response Surfase Methodology (RSM) using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal (%) of NDMA and test variables in coded unit: Y = 50.929 + 16.073(UV) - 7.909(NDMA) - 27.432(pH) - 11.385(UV)(NDMA) - 7.363(UV)(pH) +13.811(NDMA)(pH). The model predictions agreed well with the experimentally observed result ($R_2(ad.)=89%$).

Optimization of Ni2+ adsorption on 13X zeolite using box-behnken design

  • Jafari, Shoeib;Bandarchian, Farideh
    • Advances in environmental research
    • /
    • v.6 no.3
    • /
    • pp.217-227
    • /
    • 2017
  • In this study, the elimination of $Ni^{2+}$ using 13X sorbent due to an electrostatic interaction was reported. The significant factors including pH, time and 13X sorbent amount were investigated using Box-Behnken design (BBD). In the optimum experimental conditions, the linear rang and limit of detection of the proposed method were 0.1-20 and $0.102mg\;L^{-1}$, respectively. The precision as RSD% was 1.3% for concentration of $2mg\;L^{-1}$. Concerning the excellent recoveries in a short time with highly efficient sample clean-up and removal, this method may be a very powerful and innovative future sample removal technique. To the best of our knowledge, this is the first report on using BBD for optimizing the parameters affected the removal of $Ni^{2+}$ by 13X zeolite sorbent.

Optimization of Design of Plasma Process for Water Treatment using Response Surface Method (반응표면분석법을 이용한 수처리용 플라즈마 공정 설계의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.617-624
    • /
    • 2011
  • In order to confirm the creation of the OH radical which influences to RNO bleaching processes, it experimented using laboratory reactor of dielectric barrier discharge plasma (DBDP). The experiments performed in about 4 kind process variables (diameter of ground electrode, diameter of discharge electrode, diameter of quartz tube and effect of air flow rate) which influence to process. In order to examine optimum conditions of design factors as shown in Box-Behnken experiment design, ANOVA analysis was conducted against four factors. The actual RNO removal at optimized conditions under real design constraints were obtained, confirming Box-Behnken results. Optimized conditions under real design constraints were obtained for the highest desirability at 1, 1 mm diameter of ground and discharge electrode, 6 mm diameter of quartz tube and 5.05 L/min air flow rate, respectively.

Application of Experimental Design Methods for Minimum Weight Design and Sensitivity Evaluation of Passive-Type Deck Support Frame for Offshore Plant Float-Over Installation (해양플랜트 플로트오버 설치 공법용 수동형 갑판 지지 프레임의 최소중량설계와 민감도 평가를 위한 실험계획법 응용)

  • Kim, Hun Gwan;Lee, Kangsu;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.161-171
    • /
    • 2021
  • This paper presents the findings of a comparative study on minimum weight design and sensitivity evaluation using different experimental design methods for the structural design of an active-type deck support frame (DSF) developed for the float-over installation of an of shore plant topside. The thickness sizing variables of the structural members of a passive-type DSF were considered the design factors, and the output responses were defined using the weight and strength performances. The design of the experimental methods applied in the comparative study of the minimum weight design and the sensitivity evaluation were the orthogonal array design, Box- Behnken design, and Latin hypercube design. A response surface method was generated for each design of the experiment to evaluate the approximation performance of the design space exploration according to the experimental design, and the accuracy characteristics of the approximation were reviewed. Regarding the minimum weight design, the design results, such as numerical costs and weight minimization, of the experimental design for the best design case, were evaluated. The Box- Behnken design method showed the optimum design results for the structural design of the passive-type DSF.

Minimal Experimental Designs for Safety and Environmental Application (안전 및 환경적용을 위한 최소 실험 계획)

  • Choi Sung-Woon;Lee Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.5
    • /
    • pp.69-84
    • /
    • 2005
  • This paper proposes statistically designed experiments which provide a proactive means to implement safety and environmental applications. Minimal experimental designs such as fractional factorial design, Plackett-Burman design, Box-Behnken design are economical and can be achieved tremendous savings with relatively few experiments. These experimental designs and analysis methods are illustrated with cases.

Disinfection of E. coli Using Electro-UV Complex Process: Disinfection Characteristics and Optimization by the Design of Experiment Based on the Box-Behnken Technique (전기-UV 복합 공정을 이용한 E. coli 소독 : 실험계획법중 박스-벤켄법을 이용한 소독 특성 및 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.889-900
    • /
    • 2010
  • The experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV process were mathematically described as a function of parameters power ($X_1$), NaCl dosage ($X_2$), initial pH ($X_3$) and disinfection time ($X_4$) being modeled by use of the Box-Behnken technique. The application of RSM using the Box-Behnken technique yielded the following regression equation, which is an empirical relationship between the residual E. coli number and test variables in actual variables: Ln (CFU) = 23.57 - 0.87 power - 1.87 NaCl dosage - 2.13 pH - 2.84 time - 0.09 power time - 0.07 NaCl dosage pH + 0.14 pH time + 0.03 $power^2$ + 0.47 NaCl $dosage^2$ + 0.20 $pH^2$+ 0.33 $time^2$. The model predictions agreed well with the experimentally observed result ($R^2$ = 0.9987). Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the E. coli disinfection using canonical analysis was Ln 1.06 CFU (power, 15.40 W; NaCl dosage, 1.95 g/L, pH, 5.94 and time, 4.67 min). To confirm this optimum condition, the obtained number of the residual E. coli after three additional experiments were Ln 1.05, 1.10 and Ln 1.12. These values were within range of 0.62 (95% PI low)~1.50 (95% PI high), which indicated that conforming the reproducibility of the model.