• Title/Summary/Keyword: Box-Column

Search Result 125, Processing Time 0.025 seconds

A simplified method for evaluation of shear lag stress in box T-joints considering effect of column flange flexibility

  • Doung, Piseth;Sasakia, Eiichi
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.167-179
    • /
    • 2020
  • This study provides a simplified method for the evaluation of shear lag stress in rectangular box T-joints. The occurrence of shear lag phenomenon in the box T-joint generates stress concentration localized at both web-flange junctions of the beam, which leads to cracking or failure in the weld region of the joint. To prevent such critical circumstance, peak stress at the weld region is required to be checked during a preliminary design stage. In this paper, the shear lag stresses in the T-joints were evaluated using least-work solution in which the longitudinal displacements of the beam flange and web were presumed. The evaluation process considered particularly the effect of column flange flexibility, which was represented by an axial spring model, on the shear lag stress distribution. A simplified method for stress evaluation was provided to avoid solving complex mathematical problems using a stress modification factor βs from a parametric study. The results showed that the proposed method was valid for predicting the shear lag stress in the box T-joints manually, as well compared with finite element results. The results are further summarized, discussed, and clarified that more flexible column flange caused higher stress concentration.

A Study on the Stress Evaluation Equations for Steel Circular Column-to- Box Beam Connections (강재 상자형보-원형기둥 접합부의 응력평가식에 관한 연구)

  • Park, Yong Myung;Chang, Won Je;Hwang, Won Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.505-517
    • /
    • 2004
  • This paper presented equations on the stress evaluation of steel frame pier connections that were composed of a box beam and a circular column. The existing equations, which transformed the circular column into an equivalent box column had some problems; they underestimated a shear lag stress as the joint angle decreased, and overestimated a shear stress as the joint angel increased. Therefore, FE analyses were performed with various parameters, such as joint angle(${\alpha}$), span length-width ratio(L/B), and circular column-to-box beam stiffness ratio(${\alpha}$), and new equations on stress evaluation were proposed based on FE analyses. Furthermore, material and geometric nonlinear analyses were performed to estimate ultimate strength and to confirm the validity of the proposed equations.

Prediction of ultimate moment anchorage capacity of concrete filled steel box footing

  • Bashir, Muhammad Aun;Furuuchi, Hitoshi;Ueda, Tamon;Bashir, M. Nauman
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.645-658
    • /
    • 2013
  • The objective of the study is to predict the moment anchorage capacity of the concrete filled steel box (CFSB) as footing by using the 3D finite element program CAMUI developed by authors' laboratory. The steel box is filled with concrete and concrete filled steel tube (CFT) column is inserted in the box. Numerical simulation of the experimental specimens was carried out after introducing the new constitutive model for post peak behavior of concrete in compression under confinement. The experimental program was conducted to verify the reliability of the simulation results by the FE program. The simulated peak loads agree reasonably with the experimental ones and was controlled by concrete crushing near the column. After confirming the reliability of the FEM simulation, effects of different parameters on the moment anchorage capacity of concrete filled steel box footing were clarified by conducting numerically parametric study.

A Study on the Characteristics of Welding Residual Stresses and Groove Sja[e pf Cprmer Joint in Box Column with Ultra Thick Plate (극후판 Box Column 코너이음부의 용접잔류응력 및 Groove형상 특성에 관한 연구)

  • 방한서;안규백;김종명;석한길;장웅성
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.97-103
    • /
    • 1999
  • Ships, structures on the ocean, bridges, and other structures tend to be large by the development of industry. These ultra thick plate were welded with large heat input, which causes welding stresses, deformation and buckling, so it has to be considered the weld design, safety, reliability. The welded residual stresses were produced and redistributed due to the effect of large heat input. The mechanical phenomenon has not been surely identified yet. In spite of the lack of the study on the box column, there are various types of steel frame such as I type, H type, + type and $\bigcirc$ type, used in high story building. In this study, we performed computer simulation with two dimensional heat conduction and plane deformation thermal elasto-plastic finite element computer program as changing the plate thickness to 100mm, 150mm and groove angle to $60^{\circ}C$, $45^{\circ}C$, $30^{\circ}C$ of corner joint in box column. And then, to identify mechanical phenomenon such as the phenomenon of thermal distribution, welding residual stresses and deformation and to decide optimum groove angle and welding condition. The main conclusion can be summarized as follows: 1) Since the groove angle has became cooling down rapidly due to its smaller value, the temperature slope was steeped somewhat. 2) The tensile stress within the welding direction stresses was somewhat decreased at the weld metal and HAZ, increasing of the groove angle. 3) The local stress concentration of the groove angle $60^{\circ}C$ was appeared smaller than groove angle $30^{\circ}$.

  • PDF

A Greedy Poly-jog Switch-Box Router(AGREE) (Poly-jog을 사용한 그리디 스위치박스 배선기)

  • Lee, Chul-Dong;Chong, Jong-Wha
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.88-97
    • /
    • 1989
  • This paper proposes an efficient switch-box router which consists of two parts ; greedy poly-jog router and via minimizer. The greedy switch-box router of Luk, routes not only metal wires at horizontal tracks and poly-silicon wires at vertical tracks but also poly-siliocon wires ar horizontal tracks if necessary. The via minimizer reduces the number of vias and the wire length by fipping of each corner, parallel moving of wire segment, transformation metal into poly-silicon, and transformation poly-silicon into metal. The result is generated through the column-wise scan across the routing region. The expected time complexity is O(M(Nnet)). Where M, N, and Nnet are respectively the number of columns, rows, and nets in the routing region.

  • PDF

Fire resistance of high strength fiber reinforced concrete filled box columns

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.611-621
    • /
    • 2017
  • This paper presents an investigation on the fire resistance of high strength fiber reinforced concrete filled box columns (CFBCs) under combined temperature and loading. Two groups of full-size specimens were fabricated. The control group was a steel box filled with high-strength concrete (HSC), while the experimental group consisted of a steel box filled with high strength fiber concrete (HFC) and two steel boxes filled with fiber reinforced concrete. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The test results show that filling fiber concrete can improve the fire resistance of CFBC. Moreover, the configuration of longitudinal reinforcements and transverse stirrups can significantly improve the fire resistance of CFBCs.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

Buckling Strength of Box-Shape Column with Corner Rounding (모서리 곡률이 존재하는 상자형 단면 기둥의 좌굴)

  • 한금호;한택희;김기언;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.325-331
    • /
    • 2004
  • Generally, the buckling of thin-walled structures has studied for rectangular sections or circular sections. Rectangular sections have small stiffness and circular sections have large stiffness when they are compared with rectangular sections for local buckling. But both of them have similar stiffness to column buckling. Therefore in this paper, we are going to analyze the local buckling for the box section with rounded comer and compare with rectangular section. Also we confirm that the rounded comer section has larger local buckling strength than rectangular section.

  • PDF

Diaphragm Design Method of Steel Box Beam and Circular Column Connections (강재 원형기둥-상자형보 접합부의 다이아프램 설계법)

  • Kim, Young Pil;Hwang, Won Sup;Park, Moon Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.123-135
    • /
    • 2006
  • This paper investigates the design equations and the strength behavior of the diaphragm for steel box beams and circular-column connections. The strength of the connection is decided by the strength of the diaphragm and the strength of the beam and the column, because the connection diaphragm supports the concentration forces from the box beam's lower flange. In previous researches, however, the calculation procedure of the diaphragm stress from the indeterminate curved-beam model is to complicated to apply in process of the equation. Moreover, no reasonable design has yet ben made because the diaphragm's effect on the strength of the connection has not ben considered. Therefore, through nonlinear FEM analysis of the connection diaphragm, this study examines the strength behavior of a connection with diaphragm details. In addition, a great difference is confirmed between the theoretical and analytic behaviors. Fi naly, considering the strength of the connection and the rigidity capacity of the diaphragm, the diaphragm design method is proposed.