• 제목/요약/키워드: Box office prediction factors

검색결과 14건 처리시간 0.021초

영화 흥행에 영향을 미치는 새로운 변수 개발과 이를 이용한 머신러닝 기반의 주간 박스오피스 예측 (Development of New Variables Affecting Movie Success and Prediction of Weekly Box Office Using Them Based on Machine Learning)

  • 송정아;최근호;김건우
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.67-83
    • /
    • 2018
  • 2013년 누적인원 2억명을 돌파한 한국의 영화 산업은 매년 괄목할만한 성장을 거듭하여 왔다. 하지만 2015년을 기점으로 한국의 영화 산업은 저성장 시대로 접어들어, 2016년에는 마이너스 성장을 기록하였다. 영화산업을 이루고 있는 각 이해당사자(제작사, 배급사, 극장주 등)들은 개봉 영화에 대한 시장의 반응을 예측하고 탄력적으로 대응하는 전략을 수립해 시장의 이익을 극대화하려고 한다. 이에 본 연구는 개봉 후 역동적으로 변화하는 관람객 수요 변화에 대한 탄력적인 대응을 할 수 있도록 주차 별 관람객 수를 예측하는데 목적을 두고 있다. 분석을 위해 선행연구에서 사용되었던 요인 뿐 아니라 개봉 후 역동적으로 변화하는 영화의 흥행순위, 매출 점유율, 흥행순위 변동 폭 등 선행연구에서 사용되지 않았던 데이터들을 새로운 요인으로 사용하고 Naive Bays, Random Forest, Support Vector Machine, Multi Layer Perception등의 기계학습 기법을 이용하여 개봉 일 후, 개봉 1주 후, 개봉 2주 후 시점에는 차주 누적 관람객 수를 예측하고 개봉 3주 후 시점에는 총 관람객 수를 예측하였다. 새롭게 제시한 변수들을 포함한 모델과 포함하지 않은 모델을 구성하여 실험하였고 비교를 위해 매 예측시점마다 동일한 예측 요인을 사용하여 총 관람객 수도 예측해보았다. 분석결과 동일한 시점에 총 관람객 수를 예측했을 경우 보다 차주 누적 관람객 수를 예측하는 것이 더 높은 정확도를 보였으며, 새롭게 제시한 변수들을 포함한 모델의 정확도가 대부분 높았으며 통계적으로 그 차이가 유의함으로써 정확도에 기여했음을 확인할 수 있었다. 기계학습 기법 중에는 Random Forest가 가장 높은 정확도를 보였다.

개봉 전후 트윗 개수의 증감률과 영화 매출간의 상관관계 (A Study of Correlation Analysis between Increase / Decrease Rate of Tweets Before and After Opening and a Box Office Gross)

  • 박지윤;유인혁;강성우
    • 대한안전경영과학회지
    • /
    • 제19권4호
    • /
    • pp.169-182
    • /
    • 2017
  • Predicting a box office gross in the film industry is an important goal. Many works have analyzed the elements of a film making. Previous studies have suggested several methods for predicting box office such as a model for distinguishing people's reactions by using a sentiment analysis, a study on the period of influence of word-of-mouth effect through SNS. These works discover that a word of mouth (WOM) effect through SNS influences customers' choice of movies. Therefore, this study analyzes correlations between a box office gross and a ratio of people reaction to a certain movie by extracting their feedback on the film from before and after of the film opening. In this work, people's reactions to the movie are categorized into positive, neutral, and negative opinions by employing sentiment analysis. In order to proceed the research analyses in this work, North American tweets are collected between March 2011 and August 2012. There is no correlation for each analysis that has been conducted in this work, hereby rate of tweets before and after opening of movies does not have relationship between a box office gross.

빅데이터를 활용한 영화 흥행 분석 -천만 영화의 웃음과 눈물 요소를 중심으로 (The Box-office Success Factors of Films Utilizing Big Data-Focus on Laugh and Tear of Film Factors)

  • 황영미;박진태;문일영;김광선;권오영
    • 한국정보통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.1087-1095
    • /
    • 2016
  • 이 연구는 빅데이터를 활용하여 영화흥행 요인을 분석하는 것이 목적이다. 한국의 영화산업 규모는 날로 커지고 있지만, 현재까지 진행되어온 영화 흥행 요인 분석 및 예측과 관련된 논의는 관련 데이터를 망라하지 못해 정확성을 담보할 수 없는 상황이었다. 지금까지 한국에서의 천만 영화는 총 13편이 있었고, 이 연구에서는 천만 흥행에 눈물과 웃음이 주된 텍스트 내적 요인으로 작용함을 밝혔다. 이에 빅데이터를 활용해 영화에 대한 댓글 중 웃음과 눈물과 관련된 용어를 수집한 후, 영화의 구성 5단계(발단-전개-위기-절정-결말) 중 어느 부분에 웃음과 눈물 요소가 많은지를 도표화하여 천만 영화의 장르별 구성 방식을 논증하였다. 이러한 분석 결과는 앞으로 영화 제작 전 단계에서 시나리오 상에서의 흥행 예측을 하는 종합적인 데이터베이스 구축에 기여하게 될 것이다.

영화 흥행 결정 요인과 흥행 성과 예측 연구 (A Study for the Development of Motion Picture Box-office Prediction Model)

  • 김연형;홍정한
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.859-869
    • /
    • 2011
  • 영화의 흥행 결정 요인에 대한 학문적 연구와 함께 상업적 시각에서 개별 영화의 흥행 예측에 대한 관심이 증대되고 있다. 본 연구는 2010년 한국에서 개봉된 영화를 대상으로 영화 흥행에 영향을 미치는 요인들과 영화 흥행 성과간의 관계를 분석하였다. 제작 전 투자 의사결정단계에서 영화 장르, 관람등급, 감독, 배우가 통계적으로 유의한 결과를 보였으며, 배급편성의 의사결정단계에서는 배우효과, 스크린수, 배급사파워, 소셜미디어가 통계적으로 유의한 결과를 나타내고 있다. 선택확률개념을 이용한 다항로짓모형을 통해 영화 흥행작의 성과에 영향을 미치는 요인을 검증하였으며, 인공신경망, 판별분석과 비교하여 다항로짓모형의 흥행영화 예측력을 입증하였다.

딥러닝을 이용한 음악흥행 예측모델 개발 연구 (A Study on Development of a Prediction Model for Korean Music Box Office Based on Deep Learning)

  • 이도연;장병희
    • 한국콘텐츠학회논문지
    • /
    • 제20권8호
    • /
    • pp.10-18
    • /
    • 2020
  • 본 연구에서는 콘텐츠 산업 중 음악 분야 2차 산업데이터를 활용하여 딥러닝 기법을 이용한 흥행 예측모델 구축 가능성을 살펴보았다. 본 연구를 통해 구축한 딥러닝 예측 모델은 17개 독립변인 -가수 파워, 가수 영향력, 피처링 가수 파워, 피처링 가수 영향력, 참여 가수 수, 참여 가수의 성별, 작사가 역량, 작곡가 역량, 편곡가 역량, 제작사 역량, 유통사 역량, 앨범의 타이틀 여부, 음원 스트리밍 플랫폼 좋아요 수, 음원 스트리밍 플랫폼 코멘트 수, 사전 홍보 기사 수, 티저 영상 조회 수, 초기 흥행성과를 기반으로 음원 흥행성과 -음원이 차트내 상주하는 기간을 예측하는 구조다. 추가적으로 본 연구가 딥러닝 기법을 콘텐츠 분야에 접목시킨 초기단계 연구임을 고려하여, 콘텐츠 흥행예측 선행연구에서 요인 추출을 위해 활용하는 선형회귀분석을 통해 변인 소거 후 구축한 DNN 예측모델과 예측률 비교를 진행하였다.

한국 영화의 산업의 흥행 극대화를 위한 AutoML 기반의 박스오피스 유형 분류 및 예측 모델 (A Box Office Type Classification and Prediction Model Based on Automated Machine Learning for Maximizing the Commercial Success of the Korean Film Industry)

  • 임수빈;문지훈;노승민
    • Journal of Platform Technology
    • /
    • 제11권3호
    • /
    • pp.45-55
    • /
    • 2023
  • 본 논문은 한국 영화 산업의 의사 결정자들이 온라인상에서의 영화의 흥행을 극대화할 수 있도록 지원하는 데 도움을 주고자 역대 박스오피스 영화를 수집하여 영화를 유형별로 군집화하고, 유형별 온라인 박스오피스를 예측하는 모델을 제시한다. 이를 위해 먼저 다양한 특성을 고려하여 영화의 흥행 요인을 식별하고, 계산 효율성을 고려하여 특성 차원을 줄인다. 다음으로 영화의 유형을 체계적으로 분류하고, 유형별 온라인 박스오피스를 예측하며 흥행에 이바지한 요소를 분석한다. 이때, AutoML (Automated Machine Learning) 기법을 활용함으로써 다양한 기계학습 알고리즘을 자동으로 구성하고, 문제에 최적화된 알고리즘을 선택함으로써 여러 알고리즘을 쉽게 시도 및 선택한다. 이를 통해 정보화된 판단을 내릴 수 있는 기반을 제공하고, 영화 산업의 더 나은 성과를 도모하는 데 이바지할 것으로 기대할 수 있다.

  • PDF

영화흥행 영향요인 선택에 관한 연구 (A Study for the Drivers of Movie Box-office Performance)

  • 김연형;홍정한
    • 응용통계연구
    • /
    • 제26권3호
    • /
    • pp.441-452
    • /
    • 2013
  • 국내 영화 산업은 투자 배급사 멀티플렉스로 수직 계열화된 대기업 중심으로 온라인 구전 마케팅이 활발히 진행되고 있다, 최근에는 대기업 계열의 멀티플렉스 영화관 중심으로 3D 4D 영화포맷 복합상영을 통해 up-selling을 통한 흥행성과 극대화를 도모하고 있다. 영화산업 기술진보와 흥행여건 변화에 따라, 기존 관객 수 대신 매출액을 흥행성과로 정의하고, 국내 개봉 상업영화를 대상으로 축소추정기법을 포함한 여러 회귀모형을 적용하였다. 특히 LASSO회귀의 경우, 교차타당성 방법을 이용한 예측오차가 가장 적고 흥행성과에 설명력이 높은 변수 순으로 의미 있는 독립변수들을 빠르고 효율적으로 선택할 수 있었다. 2013년도 1분기 개봉 영화를 대상으로 실증분석 결과, 개봉 후 온라인 평점과 빈도 모두 영향력이 높았으나, 개봉 전에는 온라인 평점만 효과적인 것으로 나타났다. 상영포맷 또한 흥행성과에 유의한 영향을 미치는 것으로 나타났다.

The Impact of Initial eWOM Growth on the Sales in Movie Distribution

  • Oh, Yun-Kyung
    • 유통과학연구
    • /
    • 제15권9호
    • /
    • pp.85-93
    • /
    • 2017
  • Purpose - The volume and valence of online word-of-mouth(eWOM) have become an important part of the retailer's market success for a wide range of products. This study aims to investigate how the growth of eWOM has generated the product's final financial outcomes in the introductory period influences. Research design, data, and methodology - This study uses weekly box office performance for 117 movies released in the South Korea from July 2015 to June 2016 using Korean Film Council(KOFIC) database. 292,371 posted online review messages were collected from NAVER movie review bulletin board. Using regression analysis, we test whether eWOM incurred during the opening week is valuable to explain the last of box office performance. Three major eWOM metrics were considered after controlling for the major distributional factors. Results - Results support that major eWOM variables play a significant role in box-office outcome prediction. Especially, the growth rate of the positive eWOM volume has a significant effect on the growth potential in sales. Conclusions - The findings highlight that the speed of eWOM growth has an informational value to understand the market reaction to a new product beyond valence and volume. Movie distributors need to take positive online eWOM growth into account to make optimal screen allocation decisions after release.

소셜 빅데이터 분석과 기계학습을 이용한 영화흥행예측 기법의 실험적 평가 (An Experimental Evaluation of Box office Revenue Prediction through Social Bigdata Analysis and Machine Learning)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.167-173
    • /
    • 2017
  • 인공지능으로 대표되는 4차 산업혁명에 대한 관심이 증가함에 따라 사회 전반에 빅데이터 및 머신러닝 활용하려는 움직임이 활발해지고 있다. 이러한 움직임은 다양한 분야에서의 예측 시스템 개발로 현실화되고 있다. 특히 영화 산업에서는 투자, 마케팅 등에 활용을 위해 흥행 여부를 사전에 예측하고자하는 여러 가지 시도가 있어왔다. 예전에는 영화에 대한 정적 데이터만을 고려한 예측이 주류를 이뤘으나, 최근에는 실시간으로 생성되는 소셜 데이터를 활용하여 예측하고자하는 노력이 진행되고 있다. 본 논문에서는 영화의 정적 데이터와 더불어 기사, 블로그, 영화평 등 다양한 피드백 정보를 활용한 예측 기법을 제안한다. 또한 제안한 기법을 활용하여 상대적으로 흥행에 성공한 영화만을 대상으로 이들의 흥행정도를 정량적으로 추정할 수 있는지의 여부를 실험적으로 평가하였다.

소셜 빅데이터를 이용한 영화 흥행 요인 분석 (Movie Box-office Analysis using Social Big Data)

  • 이오준;박승보;정다울;유은순
    • 한국콘텐츠학회논문지
    • /
    • 제14권10호
    • /
    • pp.527-538
    • /
    • 2014
  • 수요 예측은 영화 산업에서 매우 중요한 문제이다. 최근 들어 트위터(Twitter), 페이스북(Facebook)과 같은 소셜미디어의 비정형 텍스트 데이터를 이용하여 영화 흥행을 예측하고 분석하는 시도들이 활발하게 이루어지고 있다. 기존에는 주로 데이터의 주기별 변화량을 측정하여 데이터 양과 영화 흥행간의 상관성을 분석하거나 데이터에 대해 감성의 극성 값을 부여하는 오피니언 마이닝을 통해 영화의 흥행 추이를 예측하였다. 하지만 이러한 정량적 접근만으로는 관객들이 영화를 선택하게 된 근거나 영화의 어떤 속성을 선호하는지를 알 수 없기 때문에 영화의 흥행 요인을 밝히는데 한계가 있었다. 따라서 본 연구는 트위터 데이터를 수집한 후 빈도수 측정을 통해 트윗의 내용을 대표하는 토픽(topic) 키워드를 추출하여 관객들의 관심을 반영하는 영화적 속성들이 무엇인지를 밝히고, 그 속성들에 대한 관객들의 반응을 분석함으로써 영화의 흥행에 영향을 미친 요인들을 제시한다.