• Title/Summary/Keyword: Box office prediction factors

Search Result 14, Processing Time 0.029 seconds

Development of New Variables Affecting Movie Success and Prediction of Weekly Box Office Using Them Based on Machine Learning (영화 흥행에 영향을 미치는 새로운 변수 개발과 이를 이용한 머신러닝 기반의 주간 박스오피스 예측)

  • Song, Junga;Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.67-83
    • /
    • 2018
  • The Korean film industry with significant increase every year exceeded the number of cumulative audiences of 200 million people in 2013 finally. However, starting from 2015 the Korean film industry entered a period of low growth and experienced a negative growth after all in 2016. To overcome such difficulty, stakeholders like production company, distribution company, multiplex have attempted to maximize the market returns using strategies of predicting change of market and of responding to such market change immediately. Since a film is classified as one of experiential products, it is not easy to predict a box office record and the initial number of audiences before the film is released. And also, the number of audiences fluctuates with a variety of factors after the film is released. So, the production company and distribution company try to be guaranteed the number of screens at the opining time of a newly released by multiplex chains. However, the multiplex chains tend to open the screening schedule during only a week and then determine the number of screening of the forthcoming week based on the box office record and the evaluation of audiences. Many previous researches have conducted to deal with the prediction of box office records of films. In the early stage, the researches attempted to identify factors affecting the box office record. And nowadays, many studies have tried to apply various analytic techniques to the factors identified previously in order to improve the accuracy of prediction and to explain the effect of each factor instead of identifying new factors affecting the box office record. However, most of previous researches have limitations in that they used the total number of audiences from the opening to the end as a target variable, and this makes it difficult to predict and respond to the demand of market which changes dynamically. Therefore, the purpose of this study is to predict the weekly number of audiences of a newly released film so that the stakeholder can flexibly and elastically respond to the change of the number of audiences in the film. To that end, we considered the factors used in the previous studies affecting box office and developed new factors not used in previous studies such as the order of opening of movies, dynamics of sales. Along with the comprehensive factors, we used the machine learning method such as Random Forest, Multi Layer Perception, Support Vector Machine, and Naive Bays, to predict the number of cumulative visitors from the first week after a film release to the third week. At the point of the first and the second week, we predicted the cumulative number of visitors of the forthcoming week for a released film. And at the point of the third week, we predict the total number of visitors of the film. In addition, we predicted the total number of cumulative visitors also at the point of the both first week and second week using the same factors. As a result, we found the accuracy of predicting the number of visitors at the forthcoming week was higher than that of predicting the total number of them in all of three weeks, and also the accuracy of the Random Forest was the highest among the machine learning methods we used. This study has implications in that this study 1) considered various factors comprehensively which affect the box office record and merely addressed by other previous researches such as the weekly rating of audiences after release, the weekly rank of the film after release, and the weekly sales share after release, and 2) tried to predict and respond to the demand of market which changes dynamically by suggesting models which predicts the weekly number of audiences of newly released films so that the stakeholders can flexibly and elastically respond to the change of the number of audiences in the film.

A Study of Correlation Analysis between Increase / Decrease Rate of Tweets Before and After Opening and a Box Office Gross (개봉 전후 트윗 개수의 증감률과 영화 매출간의 상관관계)

  • Park, Ji-Yun;Yoo, In-Hyeok;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.169-182
    • /
    • 2017
  • Predicting a box office gross in the film industry is an important goal. Many works have analyzed the elements of a film making. Previous studies have suggested several methods for predicting box office such as a model for distinguishing people's reactions by using a sentiment analysis, a study on the period of influence of word-of-mouth effect through SNS. These works discover that a word of mouth (WOM) effect through SNS influences customers' choice of movies. Therefore, this study analyzes correlations between a box office gross and a ratio of people reaction to a certain movie by extracting their feedback on the film from before and after of the film opening. In this work, people's reactions to the movie are categorized into positive, neutral, and negative opinions by employing sentiment analysis. In order to proceed the research analyses in this work, North American tweets are collected between March 2011 and August 2012. There is no correlation for each analysis that has been conducted in this work, hereby rate of tweets before and after opening of movies does not have relationship between a box office gross.

The Box-office Success Factors of Films Utilizing Big Data-Focus on Laugh and Tear of Film Factors (빅데이터를 활용한 영화 흥행 분석 -천만 영화의 웃음과 눈물 요소를 중심으로)

  • Hwang, Young-mee;Park, Jin-tae;Moon, Il-young;Kim, Kwang-sun;Kwon, Oh-young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1087-1095
    • /
    • 2016
  • The study aims to analyze factors of box office utilizing big data. The film industry has been increasing in the scale, but the discussion on analysis and prediction of box-office hit has not secured reliability because of failing in including all relevant data. 13 films have sold 10 million tickets until the present in Korea. The study demonstrated laughs and tears as an main interior factors of box-office hit films which showed more than 10 milling tickets power. First, the study collected terms relevant to laugh and tear. Next, it schematizes how frequently laugh and tear factors could be found along the 5-film-stage (exposition - Rising action - crisis - climax - ending) and revealed box-office hit films by genre. The results of the analysis would contribute to the construction of comprehensive database for the box office predictions on future scenarios.

A Study for the Development of Motion Picture Box-office Prediction Model (영화 흥행 결정 요인과 흥행 성과 예측 연구)

  • Kim, Yon-Hyong;Hong, Jeong-Han
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.859-869
    • /
    • 2011
  • Interest has increased in academic research regarding key factors that drive box-office success as well as the ability to predict the box-office success of a movie from a commercial perspective. This study analyzed the relationship between key success factors of a movie and box office records based on movies released in 2010 in Korea. At the pre-production investment decision-making stage, the movie genre, motion picture rating, director power, and actor power were statistically significant. At the stage of distribution decision-making process after movie production, among other factors, the influence of star actors, number of screens, power of distributors, and social media turned out to be statistically significant. We verified movie success factors through the application of a Multinomial Logit Model that used the concept of choice probabilities. The Multinomial Logit Model resulted in a higher level of accuracy in predicting box-office success compared to the Artificial Neural Network and Discriminant Analysis.

A Study on Development of a Prediction Model for Korean Music Box Office Based on Deep Learning (딥러닝을 이용한 음악흥행 예측모델 개발 연구)

  • Lee, Do-Yeon;Chang, Byeng-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.10-18
    • /
    • 2020
  • Among various contents industry, this study especially focused on music industry and tried to develop a prediction model for music box office using deep learning. The deep learning prediction model designed to predict music chart-in period based on 17 variables -singer power, singer influence, featuring singer power, featuring singer influence, number of participating singers, gender of participating singers, lyric writer power, composer power, arranger power, production agency power, distributing agency power, title track, LIKEs on streaming platform, comments on streaming platform, pre-promotion article, teaser-video view, first-week performance. Additionally we conducted a linear regression analysis to sort out factors, and tried to compare the prediction performance between the original DNN prediction model and the DNN model made of sorted out factors.

A Box Office Type Classification and Prediction Model Based on Automated Machine Learning for Maximizing the Commercial Success of the Korean Film Industry (한국 영화의 산업의 흥행 극대화를 위한 AutoML 기반의 박스오피스 유형 분류 및 예측 모델)

  • Subeen Leem;Jihoon Moon;Seungmin Rho
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.45-55
    • /
    • 2023
  • This paper presents a model that supports decision-makers in the Korean film industry to maximize the success of online movies. To achieve this, we collected historical box office movies and clustered them into types to propose a model predicting each type's online box office performance. We considered various features to identify factors contributing to movie success and reduced feature dimensionality for computational efficiency. We systematically classified the movies into types and predicted each type's online box office performance while analyzing the contributing factors. We used automated machine learning (AutoML) techniques to automatically propose and select machine learning algorithms optimized for the problem, allowing for easy experimentation and selection of multiple algorithms. This approach is expected to provide a foundation for informed decision-making and contribute to better performance in the film industry.

  • PDF

A Study for the Drivers of Movie Box-office Performance (영화흥행 영향요인 선택에 관한 연구)

  • Kim, Yon Hyong;Hong, Jeong Han
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.441-452
    • /
    • 2013
  • This study analyzed the relationship between key film and a box office record success factors based on movies released in the first quarter of 2013 in Korea. An over-fitting problem can happen if there are too many explanatory variables inserted to regression model; in addition, there is a risk that the estimator is instable when there is multi-collinearity among the explanatory variables. For this reason, optimal variable selection based on high explanatory variables in box-office performance is of importance. Among the numerous ways to select variables, LASSO estimation applied by a generalized linear model has the smallest prediction error that can efficiently and quickly find variables with the highest explanatory power to box-office performance in order.

The Impact of Initial eWOM Growth on the Sales in Movie Distribution

  • Oh, Yun-Kyung
    • Journal of Distribution Science
    • /
    • v.15 no.9
    • /
    • pp.85-93
    • /
    • 2017
  • Purpose - The volume and valence of online word-of-mouth(eWOM) have become an important part of the retailer's market success for a wide range of products. This study aims to investigate how the growth of eWOM has generated the product's final financial outcomes in the introductory period influences. Research design, data, and methodology - This study uses weekly box office performance for 117 movies released in the South Korea from July 2015 to June 2016 using Korean Film Council(KOFIC) database. 292,371 posted online review messages were collected from NAVER movie review bulletin board. Using regression analysis, we test whether eWOM incurred during the opening week is valuable to explain the last of box office performance. Three major eWOM metrics were considered after controlling for the major distributional factors. Results - Results support that major eWOM variables play a significant role in box-office outcome prediction. Especially, the growth rate of the positive eWOM volume has a significant effect on the growth potential in sales. Conclusions - The findings highlight that the speed of eWOM growth has an informational value to understand the market reaction to a new product beyond valence and volume. Movie distributors need to take positive online eWOM growth into account to make optimal screen allocation decisions after release.

An Experimental Evaluation of Box office Revenue Prediction through Social Bigdata Analysis and Machine Learning (소셜 빅데이터 분석과 기계학습을 이용한 영화흥행예측 기법의 실험적 평가)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2017
  • With increased interest in the fourth industrial revolution represented by artificial intelligence, it has been very active to utilize bigdata and machine learning techniques in almost areas of society. Also, such activities have been realized by development of forecasting systems in various applications. Especially in the movie industry, there have been numerous attempts to predict whether they would be success or not. In the past, most of studies considered only the static factors in the process of prediction, but recently, several efforts are tried to utilize realtime social bigdata produced in SNS. In this paper, we propose the prediction technique utilizing various feedback information such as news articles, blogs and reviews as well as static factors of movies. Additionally, we also experimentally evaluate whether the proposed technique could precisely forecast their revenue targeting on the relatively successful movies.

Movie Box-office Analysis using Social Big Data (소셜 빅데이터를 이용한 영화 흥행 요인 분석)

  • Lee, O-Joun;Park, Seung-Bo;Chung, Daul;You, Eun-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.527-538
    • /
    • 2014
  • The demand prediction is a critical issue for the film industry. As the social media, such as Twitter and Facebook, gains momentum of late, considerable efforts are being dedicated to prediction and analysis of hit movies based on unstructured text data. For prediction of trends found in commercially successful films, the correlations between the amount of data and hit movies may be analyzed by estimating the data variation by period while opinion mining that assigns sentiment polarity score to data may be employed. However, it is not possible to understand why the audience chooses a certain movie or which attribute of a movie is preferred by using such a quantitative approach. This has limited the efforts to identify factors driving a movie's commercial success. In this regard, this study aims to investigate a movie's attributes that reflect the interests of the audience. This would be done by extracting topic keywords that represent the contents of Twits through frequency measurement based on the collected Twitter data while analyzing responses displayed by the audience. The objective is to propose factors driving a movie's commercial success.