• Title/Summary/Keyword: Box column

Search Result 126, Processing Time 0.026 seconds

Formation of Metal Complex in a Poly(hydroxamic acid) Resin Bead

  • Lee, Taek-Seung;Jeon, Dong-Won;Kim, Jai-Kyeong;Hong, Sung-Il
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.135-139
    • /
    • 2001
  • Poly(hydroxamic acid) resin beads were prepared and complexed with various metal ions. We used IR spectroscopy to investigate the structure of metal complex. It proved that the products formed by introduction of metal ions gave stable and colored complex. It was found that the resin bead as synthesized would be a good column packing material for continuous extraction. Energy dispersive spectroscopy was use to study the distribution of metal ions in the resin matrix. It could be tentatively concluded that adsorption and diffusion of metal ions in the chelating resins mainly depended on the loading of the resin matrix which indicated interacting sites with metal ions.

  • PDF

Development of the Concrete for Concrete Filled Steel Tubular Columns (강관충전용 콘크리트의 재료개발에 관한 연구)

  • Kim, Jin-Cheol;Kim, Hoon;Park, Yon-Dong;Choi, Jin-Man;Lee, Deok-Chan;Lee, Do-Heon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.101-106
    • /
    • 1996
  • In this study, filling performance of concrete is investigated experimentally for the developmenmt of the concrete to be used in concrete filled steel tubular columns with inner diaphrams. Water-cement ratio with 3 levels, unit water contents with 5 levels, unit coarse aggregate contents with 5 levels, and slump flow with 3 levels are selected for test variables. For the estimation of the filling properties of the concrete, slump flow, V-type funnel time, U-type box height are measured and compared. A device which simulates the steel tubular column is designed and three kinds of concrete are tested with it. As the results, the filling performance is decreased with increasing coarse aggregate content. And, within the scope of this study, concretes with coarse aggregate content less than 880 kg/$\textrm{m}^3$ show good filling performance. To prevent excessive settlement of the concrete pumped into the steel tubular column, slump flow should be controlled within the limited range.

  • PDF

Cellular and corrugated cross-sectioned thin-walled steel bridge-piers/columns

  • Ucak, Alper;Tsopelas, Panos
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.355-374
    • /
    • 2006
  • Thin walled steel bridge-piers/columns are vulnerable to damage, when subjected to earthquake excitations. Local buckling, global buckling or interaction between local and global buckling usually is the cause of this damage, which results in significant strength reduction of the member. In this study new innovative design concepts, "thin-walled corrugated steel columns" and "thin-walled cellular steel columns" are presented, which allow the column to undergo large plastic deformations without significant strength reduction; hence dissipate energy under cyclic loading. It is shown that, compared with the conventional designs, circular and stiffened box sections, these new innovative concepts might results in cost-effective designs, with improved buckling and ductility properties. Using a finite element model, that takes the non-linear material properties into consideration, it is shown that the corrugations will act like longitudinal stiffeners that are supporting each other, thus improving the buckling behavior and allowing for reduction of the overall wall thickness of the column.

Model identification of spatial autoregressive data analysis (공간 자기회귀모형의 식별)

  • 손건태;백지선
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.121-136
    • /
    • 1997
  • Spatial data is collected on a regular Cartesian lattice. In this paper we consider the model indentification of spatial autoregressive(SAR) models using AIC, BIC, pattern method. The proposed methods are considered as an application of AIC, BIC, 3-patterns for SAR models through three directions; row, column and diagonal directions. Using the Monte Carlo simulation, we test the efficiency of the proposed methods for various SAR models.

  • PDF

용접구조물의 제작시 발생되는 변형사례 모음

  • 배강열;권봉재;김희진
    • Journal of Welding and Joining
    • /
    • v.6 no.1
    • /
    • pp.11-20
    • /
    • 1988
  • 이 글에서는 Butt joint에서 발생되는 가로수축, 각변형 그리고 bowing의 관찰을 통해 mechanism을 서술하였고, box beam, damper blade, bulk head, ball tank, 그리고 cylindrical column 등 실구조물의 변형문제에 접근하여 변형예측, 측정 data제시, 그리고 그 해석을 통해 구조물의 변형 크기를 인식케 하고, 동일한 구조물의 제작에 guide가 되고자 하였다. 변형에 대해서는 일률적인 방지방법이 없기 때문에 우선은 구조물의 제작시마다 변형의 크기와 향상에 대한 예측과 함께 변형계측이 계속되어 data가 축적된다면 차후 그 이용 및 응용 효과는 지대할 것이다.

  • PDF

A Study on Welding Path Finding For The Large Structure Using Kalman Filter (칼만필터를 이용한 초대형 용접구조물의 용접선 추적에 관한 연구)

  • 주해호;이화조;김석환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • In this Paper a basic technique of gantry robot control system has been developed to weld the curved part of a large structure. A welding robot is designed to rotate torch and make the torch angle normal to the welding surface. The Kalman filter is applied to obtain the smooth welding path signal from the noised Sensing data. A welding path finding algorithm has been developed in Turbo-C language.

  • PDF

Behavior of composite CFST beam-steel column joints

  • Eom, Soon-Sub;Vu, Quang-Viet;Choi, Ji-Hun;Papazafeiropoulos, George;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.583-594
    • /
    • 2019
  • In recent years, composite concrete-filled steel tubular (CFST) members have been widely utilized in framed building structures like beams, columns, and beam-columns since they have significant advantages such as reducing construction time, improving the seismic performance, and possessing high ductility, strength, and energy absorbing capacity. This paper presents a new composite joint - the composite CFST beam-column joint in which the CFST member is used as the beam. The main components of the proposed composite joint are steel H-beams, CFST beams welded with the steel H-column, and a reinforced concrete slab. The steel H-beams and CFST beams are connected with the concrete slab using shear connectors to ensure composite action between them. The structural performance of the proposed composite joint was evaluated through an experimental investigation. A three-dimensional (3D) finite element (FE) model was developed to simulate this composite joint using the ABAQUS/Explicit software, and the accuracy of the FE model was verified with the relevant experimental results. In addition, a number of parametric studies were made to examine the effects of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab on the proposed joint performance.

Experiment and bearing capacity analyses of dual-lintel column joints in Chinese traditional style buildings

  • Xue, Jianyang;Ma, Linlin;Wu, Zhanjing;Zhai, Lei;Zhang, Xin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.641-653
    • /
    • 2018
  • This paper presents experiment and bearing capacity analyses of steel dual-lintel column (SDC) joints in Chinese traditional style buildings. Two SDC interior joints and two SDC exterior joints, which consisted of dual box-section lintels, circular column and square column, were designed and tested under low cyclic loading. The force transferring mechanisms at the panel zone of SDC joints were proposed. And also, the load-strain curves at the panel zone, failure modes, hysteretic loops and skeleton curves of the joints were analyzed. It is shown that the typical failure modes of the joints are shear buckling at bottom panel zone, bending failure at middle panel zone, welds fracturing at the panel zone, and tension failure of base metal in the heat-affected zone of the joints. The ultimate bearing capacity of SDC joints appears to decrease with the increment of axial compression ratio. However, the bearing capacities of exterior joints are lower than those of interior joints at the same axial compression ratio. In order to predict the formulas of the bending capacity at the middle panel zone and the shear capacity at the bottom panel zone, the calculation model and the stress state of the element at the panel zone of SDC joints were studied. As the calculated values showed good agreements with the test results, the proposed formulas can be reliably applied to the analysis and design of SDC joints in Chinese traditional style buildings.

Experimental Evaluation of Fire Behavior of High-Strength CFT Column with Constant Axial Load (일정축력하에 고온을 받는 고강도 콘크리트 충전강관 기둥의 구조적 거동에 관한 연구)

  • Chung, Kyung Soo;Choi, In Rak;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • Fire-resistant (FR) test data for a square concrete-filled steel tube (CFT) columns consisting of high-strength steel (fy>650MPa) and high strength concrete (fck>100MPa) under axial loads are insufficient. The FR behavior of square high-strength CFT members was investigated experimentally for two specimens having ${\Box}-400{\times}400{\times}15{\times}3,000mm$ with two axial load cases (5,000kN and 2,500kN). The results show that the FR performance of the high-strength CFT was rapidly decreased at earlier time (much earlier at high axial load) than expected due to high strength concrete spalling and cracks. In addition, a fiber element analysis (FEA) model was proposed and used to simulate the fiber behaviour of the columns. For steel and concrete, the mechanical and thermal properties recommended in EN 1994-1-2 are adopted. Test results were compared to those of numerical analyses considering a combination of temperature and axial compression. The numerical model can reasonably predict the time-axial deformation relationship.

A Study of Lamella Tearing being Produced by Corner Joint Welding in Box Column of Ultra Thick Plate (극후판 Box Column의 Corner Joint 용접시 발생하는 Lamella Tearing에 관한 연구)

  • Han-Sur Bang;Seong-Joo Kim;Jong-Myung Kim;Woong-Sung Jang;Young-Seob Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.95-104
    • /
    • 1999
  • Use of the ultra thick plate is being continuously increased in large off-shore structures, ships, bridges and skyscraper construction, due to increasingly large-sized steel structures and it seems that this trend will be maintained. But, occurrence of the lamella tearing has been reported in ultra thick plate used for construction. It is reportedly caused by impurities such S(sulfur), P(phosphorus) and others accumulated in the ultra thick plate's centerline in the thickness direction with strip shape or by restraint residual stress caused by the welding. In the ultra thick plate made by continuous casting method, occurrence of lamination is difficult to avoid because of the properties of production procedure. Therefore, with a view to reducing the lamella properties, this report tries tearing in the steel structure in the view of welding strength rather than metallic properties, this report tries to seek the optimum groove and welding procedure by using the computer simulation based on FEM(Finite Element Method).

  • PDF