• Title/Summary/Keyword: Bovine parvovirus

Search Result 20, Processing Time 0.019 seconds

Real-Time PCR for Quantitative Detection of Bovine Parvovirus during Manufacture of Biologics (생물의약품 제조공정에서 Bovine Parvovirus 정량 검출을 위한 Real-Time PCR)

  • Lee, Dong-Hyuck;Lee, Jung-Hee;Kim, Chan-Kyong;Kim, Tae-Eun;Bae, Jung-Eun;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.173-181
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue-engineered products, and cell therapy. Manufacturing processes for the biologics have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine parvovirus (BPV) is one of the common bovine pathogens and has widely been known as a possible contaminant of biologics. In order to establish the validation system for the BPV safety of biologics, a real-time PCR method was developed for quantitative detection of BPV contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BPV DNA were selected, and BPV DNA was quantified by use of SYBR Green 1. The sensitivity of the assay was calculated to be $1.3{\times}10^{-1}\;TCID_{50}/mL$. The real-time PCR method was validated to be reproducible and very specific to BPV. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BPV. BPV DNA could be quantified in CHO cell as well as culture supernatant. Also the real-time PCR assay could detect $1.3{\times}10^0\;TCID_{50}/mL$ of BPV artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BPV contamination during manufacture of biologics.

Evaluation of Viral Inactivation Efficacy of a Continuous Flow Ultraviolet-C Reactor (UVivatec) (연속 유동 Ultraviolet-C 반응기(UVivatec)의 바이러스 불활화 효과 평가)

  • Bae, Jung-Eun;Jeong, Eun-Kyo;Lee, Jae-Il;Lee, Jeong-Im;Kim, In-Seop;Kim, Jong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.377-382
    • /
    • 2009
  • Viral safety is an important prerequisite for clinical preparations of all biopharmaceuticals derived from plasma, cell lines, or tissues of human or animal origin. To ensure the safety, implementation of multiple viral clearance (inactivation and/or removal) steps has been highly recommended for manufacturing of biopharmaceuticals. Of the possible viral clearance strategies, Ultraviolet-C (UVC) irradiation has been known as an effective viral inactivating method. However it has been dismissed by biopharmaceutical industry as a result of the potential for protein damage and the difficulty in delivering uniform doses. Recently a continuous flow UVC reactor (UVivatec) was developed to provide highly efficient mixing and maximize virus exposure to the UV light. In order to investigate the effectiveness of UVivatec to inactivate viruses without causing significant protein damage, the feasibility of the UVC irradiation process was studied with a commercial therapeutic protein. Recovery yield in the optimized condition of $3,000\;J/m^2$ irradiation was more than 98%. The efficacy and robustness of the UVC reactor was evaluated with regard to the inactivation of human immunodeficiency virus (HIV), hepatitis A virus (HAV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), porcine parvovirus (PPV), bovine parvovirus (BPV), minute virus of mice (MVM), reovirus type 3 (REO), and bovine parainfluenza virus type 3 (BPIV). Non enveloped viruses (HAV, PPV, BPV, MVM, and REO) were completely inactivated to undetectable levels by $3,000\;J/m^2$ irradiation. Enveloped viruses such as HIV, BVDV, and BPIV were completely inactivated to undetectable levels. However BHV was incompletely inactivated with slight residual infectivity remaining even after $3,000\;J/m^2$ irradiation. The log reduction factors achieved by UVC irradiation were ${\geq}3.89$ for HIV, ${\geq}5.27$ for HAV, 5.29 for BHV, ${\geq}5.96$ for BVDV, ${\geq}4.37$ for PPV, ${\geq}3.55$ for BPV, ${\geq}3.51$ for MVM, ${\geq}4.20$ for REO, and ${\geq}4.15$ for BPIV. These results indicate that UVC irradiation using UVivatec was very effective and robust in inactivating all the viruses tested.

Infectious Disease Control of Bovine Embryos (소 수정란의 전염성질병 예방)

  • 석호봉
    • Journal of Embryo Transfer
    • /
    • v.1 no.1
    • /
    • pp.16-27
    • /
    • 1986
  • Based on the current importing and exporing regulations for disease control of embryo transfer, some important microorganisms and their control possibilities are reviewed. The results reviewed were sumrnarized as follows: 1. Regulations regarding to the import of embryos vary between importing and exporting countries, but exporting countries examine the donor and embryos for the heaith certification by the requirements of importing countries. 2. Organisms that infect the gametes are 5 kinds of viruses and the diseases caused by them could not be controlled or eradicated using embryo transfer. 3. Organisms that do not infect the gametes are 4 kinds of viruses and the causal organisms are potential candidates for control or eradication by embryo transfer. 4. Organisms that penetrate the zona pellucida and infect the embryo are 6 kinds of viruses including bovine viral diarrhea virus. 5. Organisms that cannot penetrate the zona pellucida or do not infect the embryo are 15 kinds of viruses and the removal from their contaminations are recommended by proper washing procedure and antisera treatment. Bovine and porcine parvovirus, porcine pseudorabies virus and vesicular stomatitis virus are included in these organisms. 6. Bovine embryos that artificially exposed to various pathogenic organisms such as bovine herpes virus, IBR virus, bluetongue virus, bovine viral diarrhea virus and Brucella abortus in vitro are discussed about their infection by several treatments.

  • PDF

Optimization and Validation of a Virus Filtration Process for Efficient Removal of Viruses from Urokinase Solution Prepared from Human Urine

  • Kim, In-Seop;Choi, Yong-Woon;Lee, Sung-Rae
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.140-147
    • /
    • 2004
  • Urokinase is an enzyme with fibrinolytic activity (plasminogen activator) isolated from fresh urine of healthy men. Viral safety is an important prerequisite for clinical preparation of the protein from urine. In order to increase the viral safety of a high purity urokinase in regard to non-enveloped viruses, a virus removal process using a novel polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. Urokinase was able to pass through the filter with recoveries of 95% in the production scale process. No substantial changes were observed in physical and biochemical characteristics of the filtered urokinase in comparison with those of the enzyme before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production scale cartridges and tested if it could remove several experimental model viruses for human pathogenic viruses, including porcine parvovirus (PPV), human hepatitis A virus (HAV), murine encephalomyocarditis virus (EMCV), bovine viral diarrhoea virus (BVDV), and bovine herpes virus (BHV). Non-enveloped viruses (PPV, HAV, and EMCV) as well as enveloped viruses (BVDV and BHV) were completely removed during filtration. The log reduction factors achieved were $\geq$4.86 for PPV, $\geq$4.60 for HAV, $\geq$6.87 for EMCV, $\geq$4.60 for BVDV, and $\geq$5.44 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of the final products.

Virus Inactivation during the Manufacture of a Collagen Type I from Bovine Hides (소 가죽 유래 Type I Collagen 생산 공정에서 바이러스 불활화)

  • Bae, Jung Eun;Kim, Chan Kyung;Kim, Sungpo;Yang, Eun Kyung;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.314-318
    • /
    • 2012
  • Most types of collagen used for biomedical applications, such as cell therapy and tissue engineering, are derived from animal tissues. Therefore, special precautions must be taken during the production of these proteins in order to assure against the possibility of the products transmitting infectious diseases to the recipients. The ability to remove and/or inactivate known and potential viral contaminants during the manufacturing process is an ever-increasingly important parameter in assessing the safety of biomedical products. The purpose of this study was to evaluate the efficacies of the 70% ethanol treatment and pepsin treatment at pH 2.0 for the inactivation of bovine viruses during the manufacture of collagen type I from bovine hides. A variety of experimental model viruses for bovine viruses including bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), bovine parainfluenza 3 virus (BPIV-3), and bovine parvovirus (BPV), were chosen for the evaluation of viral inactivation efficacy. BHV, BVDV, BPIV-3, and BPV were effectively inactivated to undetectable levels within 1 h of 70% ethanol treatment for 24 h, with log reduction factors of ${\geq}5.58$, ${\geq}5.32$, ${\geq}5.11$, and ${\geq}3.42$, respectively. BHV, BVDV, BPIV-3, and BPV were also effectively inactivated to undetectable levels within 5 days of pepsin treatment for 14 days, with the log reduction factors of ${\geq}7.08$, ${\geq}6.60$, ${\geq}5.60$, and ${\geq}3.59$, respectively. The cumulative virus reduction factors of BHV, BVDV, BPIV-3, and BPV were ${\geq}12.66$, ${\geq}11.92$, ${\geq}10.71$, and ${\geq}7.01$. These results indicate that the production process for collagen type I from bovine hides has a sufficient virus-reducing capacity to achieve a high margin of virus safety.

Inactivation of Infectious Microorganisms by Disinfection and Sterilization Processes for Human Amniotic Membrane Grafts (이식을 위한 사람 양막의 소독 및 멸균공정에 의한 감염성 위해인자 불활화 효과)

  • Bae, Jung-Eun;Kim, Chan-Kyung;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.346-353
    • /
    • 2009
  • Viral, bacterial, and fungal infection can be transmitted from donor to recipient via transplantation of human amniotic membrane. Therefore human amniotic membrane for transplantation should be disinfected and sterilized before use. The purpose of this study was to examine the efficacy of the disinfection process and sterilization processes used at human tissue bank in the inactivation of viruses, bacteria, and fungi. A variety of experimental model viruses, bacteria, and fungus for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), porcine parvovirus (PPV), Escherichia coli, Bacillus subtilis, and Candida albicans were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment, gamma irradiation process, and ethylene oxide (EO) gas sterilization process. Also non-enveloped viruses such as HAV and PPV were effectively inactivated to undetectable levels by gamma irradiation and EO gas treatment. However HAV and PPV showed high resistance to 70% ethanol treatment. E. coli and C. albicans were effectively inactivated to undetectable levels by 70% ethanol treatment, gamma irradiation process, and EO gas treatment. Also B. subtilis was effectively inactivated to undetectable levels by gamma irradiation process and EO gas treatment. However it showed high resistance to 70% ethanol treatment.

Application of Monoclonal Antibody to Develop Diagnostic Techniques for Infectious Bovine Rhinotracheitis Virus I. Production of Monoclonal Antibodies against Infectious Bovine Rhinotracheitis Virus (단(單)클론성 항체(抗體)를 이용한 소전염성비기관염(傳染性鼻氣管炎)바이러스 진단법(診斷法) 개발 I. 소전염성비기관염(傳染性鼻氣管炎)바이러스에 대한 단(單)클론성 항체(抗體) 생산(生産))

  • Jun, Moo Hyung;Kim, Duck Hwan;Lee, Hun Jun;An, Soo Hwan;Kweon, Chang Hee
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.401-408
    • /
    • 1987
  • Nine monoclonal antibodies directed against infectious bovine rhinotracheitis virus (IBRV) were prepared by using cell hybridization technique, and the biological properties of the antibodies were investigated by means of immunofluorescence, serum neutralization, and electrophoretic analysis. Eight of 9 monoclonal antibodies reacted specifically with the antigenic constituents of IBRV, infectious laryngotracheitis virus, Marek's disease virus, turkey herpesvirus, hog cholera virus, porcine parvovirus and transmissible gastroenteritis virus. However, the remaining one, 26-2 clone, was found to be cross-reactive with pseudorabies virus. Two monoclonal antibodies, 7-C-2 and 12-A-2, which had neutralizing activity, were reactive with the molecular weights of 72 kilo daltons (72K) and 125K of IBRV proteins electrophoretically separated, respectively. The monoclonal antibody, 3-H-3, which is corresponding to 94K of IBRV proteins, revealed no neutralizing activity. The cross-reactive monoclonal antibody, 26-2, was proved by electrophoretical analysis to be reactive with 100K of IBRV proteins and 40K of pseudorabies virus.

  • PDF

Prevalence of enteropathogens in the feces from diarrheic Korean native cattle in Gwangju area, Korea (광주지역 한우 분변 내 설사병 병원체 조사)

  • Koh, Ba-Ra-Da;Kim, Hyo-Jung;Oh, A-Reum;Jung, Bo-Ram;Park, Jae-Sung;Lee, Jae-Gi;Na, Ho-Myoung;Kim, Yong-Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.93-112
    • /
    • 2019
  • Calf diarrhea is a common disease in young claves and is still a major cause of productivity and economic loss in livestock farms. Fecal samples from Korean native cattle (n=100) with diarrhea from 64 farms in Gwangju area, Korea from september 2017 to December 2018 were examined for shedding of important protozoan parasitic, viral and bacterial pathogens using culture, rapid test kit and PCR methods. Of 57 (89.1%) of the 64 Korean native cattle farms examined had samples infected with at least one of the investigated pathogens. Among 100 fecal samples, 88 samples were positive for at least one the twelve pathogens and 51 samples were simultaneously positive for two or more pathogens by culture and PCR assay. Bovine group A rotavirus (BRV) was the most common pathogen, found in 43/100 (43.0%) samples on 32/64 (50.0%) farms. Subsequently, kobuvirus (30.0%), pathogenic E. coli (29.0%), bovine parvovirus (17.0%), Giardia spp. (13.0%), Eimeria spp. (10.0%), Clostridium perfringens type A (8.0%), bovine torovirus (8.0%), bovine viral diarrhea virus (6.0%), bovine coronavirus (5.0%), bovine norovirus (2.0%) and Cryptosporidium spp. (2.0%) were detected. Nebovirus, kırklareli virus, bovine adenovirus, Salmonella spp. and intestinal parasites were not detected. Of the 72 calves sampled in this age group, 64 (88.9%) samples were positive for at least one enteropathogen. BRV was identified in 34/72 (47.2%) samples from 27/48 (56.3%) farms. Subsequently, pathogenic E. coli (30.6%), kobuvirus (29.2%), BPaV (22.2%), Giardia spp. (15.3%), Eimeria spp. (9.7%), BVDV (6.9%), Cl. perfringens type A (6.9%), BCoV (4.6%) and Cryptosporidium spp. (2.8%) were detected in fecal samples. A total of ninety-six strains of E. coli were isolated from one hundred fecal samples collected from Korean native cattle with diarrhea. The presence of stx1, stx2, eaeA, LT, STa, STb, ehxA, saa, F4, F5(K99), F6, F17, F18 and F41 genes in the isolates was investigated by PCR. Out of ninety-six E. coli isolates screened for specific genes, 30 strains E. coli were identified to harbor shiga toxin-producing E. coli (STEC) 7 (7.3%), enterohemorrhagic E. coli (EHEC) 8 (8.3%), enteropathogenic E. coli (EPEC) 6 (6.3%), enterotoxigenic E. coli (ETEC) 2 (2.1%) and STEC/ETEC hybrid 7 (7.3%). This study provides epidemiological estimates of the prevalence of Korean native cattle's enteropathogens in Gwangju area, Korea, which would be used for cattle farmers and veterinarians to select appropriate therapeutic method.

Partitioning and Inactivation of Viruses by Cold Ethanol Fractionation and Pasteurization during Manufacture of Albumin from Human Plasma

  • Kim, In-Seop;Eo, Ho-Gueon;Chang, Chon-Geun;Lee, Soung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.858-864
    • /
    • 2000
  • The purpose of the present study was to examine the efficacy and mechanism of the fraction IV cold ethanol fractionation and pasteurization ($60^{\circ}C$ heat treatment for 10h) steps, involved in the manufacture of albumin from human plasma, in the removal and/or inactivation of blood-born viruses. A variety of experimental model viruses for human pathogenic viruses, including the Bovine viral diarrhoea virus (BVDV), Bovine herpes virus (BHV), Murine encephalomyocarditis virus (EMCV), and Porcine parvovirus (PPV), were selected for this study. Samples from the relevant stages of the production process were spiked with the viruses, and the amount of virus in each fraction was then quantified using a 50% tissue culture infectious dose ($TCID_{50}$). The mechanism of reduction for the enveloped viruses (BHV and BVDV) during fraction IV fractionation was inactivation rather than partitioning, however, it was partitioning in the case of the non-enveloped viruses (EMCV and PPV). The log reduction factors achieved during fraction IV fractionation were ${\geq}6.9$ BHV, $\geq5.2$ for BBDV, 4.9 for EMC, and 4.0 for PPV. Pasteurization was found to be a robust and effective step in inactivating the enveloped viruses as well as EMCV. The log reduction factors achieved during pasteurization were $\geq7.0$ for BHV, $\geq6.1$ for BVDV, $\geq6.3$ for EMCV, and 1.7 for PPV. These results indicate that the production process for albumin has sufficient virus-reducing capacity to achieve a high margin for virus safety.

  • PDF

Improvement of Virus Safety of an Antihemophilc Factor IX by Virus Filtration Process

  • Kim, In-Seop;Choi, Yong-Woon;Kang, Yong;Sung, Hark-Mo;Sohn, Ki-Whan;Kim, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1317-1325
    • /
    • 2008
  • Viral safety is an important prerequisite for clinical preparations of plasma-derived pharmaceuticals. One potential way to increase the safety of therapeutic biological products is the use of a virus-retentive filter. In order to increase the viral safety of human antihemophilic factor IX, particularly in regard to non-enveloped viruses, a virus removal process using a polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. The most critical factor affecting the filtration efficiency was operating pH and the optimum pH was 6 or 7. Flow rate increased with increasing operating pressure and temperature. Recovery yield in the optimized production-scale process was 96%. No substantial changes were observed in the physical and biochemical characteristics of the filtered factor IX in comparison with those before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production-scale cartridges and to test if it could remove several experimental model viruses for human pathogenic viruses, including human hepatitis A virus (HAV), porcine parvovirus (PPV), murine encephalomyocarditis virus (EMCV), human immunodeficiency virus type 1 (HIV), bovine viral diarrhea virus (BVDV), and bovine herpes virus (BHV). Non-enveloped viruses (HAV, PPV, and EMCV) as well as enveloped viruses (HIV, BVDV, and BHV) were completely removed during filtration. The log reduction factors achieved were $\geq$6.12 for HAV, $\geq$4.28 for PPV, $\geq$5.33 for EMCV, $\geq$5.51 for HIV, $\geq$5.17 for BVDV, and $\geq$5.75 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of factor IX.