• Title/Summary/Keyword: Bovine Growth Hormone

Search Result 48, Processing Time 0.03 seconds

The Endocrine Control of Corpus Luteum Function (황체기능의 내분비 제어)

  • 성환후
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.4
    • /
    • pp.307-322
    • /
    • 1996
  • The corpus luteum (CL) is formed by the action of a surge of luteinizing hormone (LH) on the pre-ovulatory follicle. Luteal cells derived from granulosa and theca interna cells continue to secrete progesterone for about two weeks. LH in domestic animals is essential for the normal secretion of progesterone at all stages of the luteal phase. For this process in the rodents, 20$\alpha$-hydroxysteroid dehydrogenase (20$\alpha$-HSD) is indispensable. 20$\alpha$-HSD is an enzyme to be a biologically inactive steroid. This enzyme plays a critical role in the regulation of the rat luteal function and reported to be present in steroid-producing tissues such as the testis and adrenal gland. We have purified 20$\alpha$-HSD and found two distinct 20$\alpha$-HSD molecules (HSD-1 and HSD-2). Their molecular weights are both estimated to be 33kd.The amino acid compositions of HSD-1 and HSD-2 are mostly similar, but there is a slight difference in the content of lysine. We demonstrated that 1) CL of previous generations contribute more to whole ovarian 20$\alpha$-HSD activity, 2) newly formed corpora lutea contain only 20$\alpha$-HSD-1 activity, and 3) old CL express activities of each HSD isozyme as shown in the luteal tissue of cycling rats on the day of diestrus where only degenerating old CL exist. The increase in 20$\alpha$-HSD activity identified seems to be related to the increase in the numbers of 20$\alpha$-HSD-positive cells. Interestingly, 20$\alpha$-HSD-1 activities were strongly found in the follicle fluids and theca interna cells by immunohistochemical study. Thus, the activity of 20$\alpha$-HSD may be related to a survival mechanism of those luteal cells and follicles remaining in the ovaries. Luteal cells arise from two sources. The small luteal cells are all of theca cell origin, while the large luteal cells are mainly of granulosa cell origin. CL of Korean Native Cattle, as those of other animal species, contains two morphologycally and functionally distinct luteal cell populations, such as small and large luteal cells as well as nonluteal cells. In all reproductive states except in the late luteal phase, the bovine CL also contained more small luteal cells than large luteal cells. Luteal tissue secretes a variety of growth factors (proteins) and the pattern of secretion changes during all stages of the luteal phase. These growth factors could be important in regulating the function of the bovine corpus luteum and may act in a potential endocrine autocrine and paracrine mechanisms. Therefore, further work has to be done to elucidate the role of growth factors in the ovary, especially in the corpus luterum. Interest should be focussed on interaction of these growth factors in the regulation of luteal cell and the localization of cytokine synthesis in differnet luteal cells.

  • PDF

Validation of Methods for Isolation and Culture of Alpaca Melanocytes: A Novel Tool for In vitro Studies of Mechanisms Controlling Coat Color

  • Bai, Rui;Sen, Aritro;Yu, Zhihui;Yang, Gang;Wang, Haidong;Fan, Ruiwen;Lv, Lihua;Lee, Kyung-Bon;Smith, George W;Dong, Changsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.430-436
    • /
    • 2010
  • The objective of the present studies was to develop and validate a system for isolation, purification and extended culture of pigment-producing cells in alpaca skin (melanocytes) responsible for coat color and to determine the effect of alpha melanocyte stimulating hormone treatment on mRNA expression for the melanocortin 1 receptor, a key gene involved in coat color regulation in other species. Skin punch biopsies were harvested from the dorsal region of 1-3 yr old alpacas and three different enzyme digestion methods were evaluated for effects on yield of viable cells and attachment in vitro. Greatest cell yields and attachment were obtained following dispersion with dispase II relative to trypsin and trypsin-EDTA treatment. Culture of cells in medium supplemented with basic fibroblast growth factor, bovine pituitary extract, hydrocortisone, insulin, 12-O-tetradecanolphorbol-13-acetate and cholera toxin yielded highly pure populations of melanocytes by passage 3 as confirmed by detection of tyrosinase activity and immunocytochemical localization of melanocyte markers including tyrosinase, S-100 and micropthalmia-associated transcription factor. Abundance of mRNA for tyrosinase, a key enzyme in melanocyte pigment production, was maintained through 10 passages showing preservation of melanocyte phenotypic characteristics with extended culture. To determine hormonal responsiveness of cultured melanocytes and investigate regulation of melanocortin 1 receptor expression, cultured melanocytes were treated with increasing concentrations of ${\alpha}$-melanocyte stimulating hormone. Treatment with ${\alpha}$-melanocyte stimulating hormone increased melanocortin receptor 1 mRNA in a dose dependent fashion. The results demonstrated culture of pure populations of alpaca melanocytes to 10 passages and illustrate the potential utility of such cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in fiber-producing species.

Expression and Secretion of Foreign Proteins in Yeast Using the ADH1 Promoter and 97 K Killer Toxin Signal Sequence

  • Hong, Seok-Jong;Kang, Hyen-Sam
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.123-129
    • /
    • 1998
  • Foreign proteins, $endo-{\beta}-1,4-glucanase$ of Bacillus subtilis, preS1+S2 region of hepatitis B virus large surface antigen, human ${\beta}_2-adrenergic$ receptor ($h{\beta}_{2}AR$), and bovine growth hormone (bGH) were expressed in Saccharomyces cerevisiae and secreted into the medium. These proteins were expressed using the alcohol dehydrogenase I (ADH1) promoter of Saccharomyces cerevisiae and secreted by signal sequence of the 97 K killer toxin gene of doublestranded linear DNA plasmid (pGKL1) of S. cerevisiae. All these proteins underwent severe modifications; in particular, N-glycosylation in the case of $endo-{\beta}-1,4-glucanase$, $h{\beta}_2AR$, and preS1+S2. Seventy four percent of the expressed $endo-{\beta}-1,4-glucanase$ was secreted into the culture medium. Highly modified proteins were detected in the culture medium and in the cell. Expressed $h{\beta}_2AR$, which has seven transmembrane domains, remained in the cell. The degrees of secretion and modification and the states of proteins in the culture medium and in the cell were quite different. These results indicated that the nature of the protein has a critical role in its secretion and modifications.

  • PDF

Effect of Concentration and Exposure Duration of FBS on Parthenogenetic Development of Porcine Follicular Oocytes

  • Kim, Hyun-Jong;Cho, Sang-Rae;Choe, Chang-Yong;Choi, Sun-Ho;Son, Dong-Soo;Kim, Sung-Jae;Sang, Byung-Don;Han, Man-Hye;Ryu, Il-Sun;Kim, In-Cheul;Kim, Il-Hwa;Lee, Woon-Kyu;Im, Kyung-Soon
    • Journal of Embryo Transfer
    • /
    • v.22 no.4
    • /
    • pp.245-249
    • /
    • 2007
  • The aim of present experiment was to examine hatching rate as in vitro indicator of viability of porcine embryos before early stage embryo transfer such as zygotes or 2-cell stage embryos. Cumulus-oocyte complexes (COCs) collected from ovaries were matured in North Carolina State University 23 (NCSU-23) containing 10% porcine follicular fluid (pFF), 10 ng/ml epidermal growth factor (EGF), $10{\mu}g/ml$ follicle stimulating hormone (FSH), $35{\mu}g/ml$ luteinizing hormone (LH), and 1mg/ml cysteine. After 24 hours, the COCs were transferred to the same medium without hormones. After 65h of maturation, oocytes were exposed to phosphate buffered saline (PBS) with 7% ethanol (v/v) for 7 minutes, and then the oocytes were washed and cultured in tissue culture medium (TCM) 199 containing 5 ug/ml cytochalasin B for 5h at $38.5^{\circ}C$ in an atmosphere of 5% $CO_2$ and 95% air with high humidity. After cytochalasin B treatment, the presumptive parthenotes were cultured in porcine zygote medium (PZM)-5 and cleavage of the parthenotes was assessed at 72h of activation, Normally cleaved parthenotes were cultured for an additional 8 days to evaluate their ability to develop to blastocyst and hatching stages. The fetal bovine serum (FBS) were added at Day 4 or 5 with concentrations of 2.5, 5 or 10%. The blastocyst rates were ranged within $39.1{\sim}70%$ in each treatment. However hatching rate was dramatically decreased in non-addition group. In this experiment, embryo viability in female reproductive tract may be estimated before embryo transfer with in vitro culture adding FBS by hatching ability.

Effects of Active Immunization against Somatostatin or its Analogues on Milk Protein Synthesis of Rat Mammary Gland Cells

  • Kim, J.Y.;Cho, K.K.;Chung, M.I.;Kim, J.D.;Woo, J.H.;Yun, C.H.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.570-575
    • /
    • 2002
  • Effects of active immunization against native 14-mer somatostatin (SRIF, somatotropin releasing inhibiting factor) and its two 14-mer-somatostatin analogues on the milk production in rat mammary cells were studied. Native SRIF, Tyr11-somatostatin (Tyr11-SRIF), and D-Trp8, D-Cys14-somatostatin (Trp8Cys14-SRIF) were conjugated to bovine serum albumin (BSA) for immunogen preparation. Twenty-four female Sprague-Dawley rats were divided into four groups and immunized against saline (Control), SRIF, Tyr11-SRIF, and Trp8Cys14-SRIF at five weeks of age. Booster immunizations were performed at 7, 9, and 11 weeks of age. SRIFimmunized rats were mated at 10 weeks of age. The blood and mammary glands were collected at day 15 post-pregnancy and -lactation. To measure the amount of milk protein synthesis in the mammary gland, mammary cells isolated from the pregnant and the lactating rats, were cultured in the presence of $^3H$-lysine. No significant differences in growth performance, concentration of growth hormone in the circulation, and the amount of milk protein synthesis were observed among the groups. Inductive levels of serum anti-SRIF antibody in the SRIF and Tyr11-SRIF groups but not in the Trp8Cys14-SRIF group, were significantly higher than that of the control group during the pregnancy and lactation periods. The result suggests that active immunization against native 14-mer SRIF and Tyr11-SRIF was able to induce anti-SRIF antibodies, but did not affect the milk protein synthesis.

Effect of Bovine Granulosa Cell Culture Supernatant on In Vitro Development of Mouse Embryos (소 과립막세포의 배양 상층액이 생쥐배의 체외발달에 미치는 영향)

  • Lee, Sang-Bum;Moon, Sin-Hong;Kim, Seon-Ku
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1764-1768
    • /
    • 2009
  • This study was carried out to examine a concentration of steroid hormones and in vitro development of mouse embryos in culture supernatant of bovine granulosa cells (GC). To obtain the culture supernatant, granulosa cells were retrieved from mature follicles (6~15 mm diameter) and immature follicles (2~5 mm diameter) of bovine ovary and were cultured, respectively, in media of Ham's F-10 with 15% FCS for 16 days. Mature and immature granulosa cells formed their monolayers easily and showed similar growth patterns in culturing. There was no morphological difference between mature and immature granulosa cells. High levels of both progesterone and estradiol were detected in the culture supernatant of mature granulosa cells and immature granulsa cells, and the endocrine profiles of the two types of cells were similar. Progesterone secretion of granulosa cells was high in the late stage of culturing and estradiol secretion was high in the early stage of culturing. In vitro development rates of mouse embryos to morula, blastocyst and hatched blastocyst were significantly (p<0.05) higher in culture supernatant of mature granulosa cells (92.7%, 78.1% and 34.5%) and in culture supernatant of immature granulosa cells (96.4%, 78.5% and 26.8%) than in Ham's F-10 (86.7%, 41,7% and 13.3%). However, there was no difference between the culture supernatant of mature granulosa cells and the culture supernatant of immature granulosa cells in the development of embryos.

The Separate and Combined Effects of Insulin, Dexamethasone and Growth Hormone on the OB Gene Expression and Leptin Secretion from Cultured Human Visceral Adipose Tissue (인체의 복강 내 지방조직 배양을 통한 OB 유전자 발현과 Leptin 분비에 미치는 인슐린, Dexamethasone과 성장호르몬의 단독 또는 복합적 영향에 관한 연구)

  • Hwang, Il Tae;Kim, Kyung Hee;Hwang, Jin Soon;Shin, Choong Ho;Yang, Sei Won
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.795-802
    • /
    • 2003
  • Purpose : We investigated the hormonal control of OB gene expression and leptin secretion in cultured human visceral adipose tissue. Methods : Visceral adipose tissues were cultured for up to 48 hrs in modified Eagle's medium with varying concentration of hormones : Control(no hormone), bovine insulin(100 nM), Dexamethasone(DEX, 100 nM), growth hormone(GH, 40 ng/mL), insulin+DEX(100 nM each), insulin+DEX+GH(100 nM insulin and DEX, 40 ng/mL GH). Quantitative analysis of leptin mRNA was performed by competitive reverse transcription polymerase chain reaction, and leptin secretion in culture medium was measured by IRMA using a commercial kit. Results : The addition of dexamethasone to the medium significantly increased OB gene expression and leptin secretion(P<0.05). Unlike dexamethasone, insulin did not affect OB gene expression and leptin secretion. Both insulin and dexamethasone, at high concentration, significantly stimulated leptin secretion compared with basal values(P<0.05). Leptin gene expression was not significantly increased by GH treatment alone, however GH, in combination with high concentrations of insulin and dexamethasone, attenuated the stimulatory effects of high concentrations of insulin and dexamethasone. Conclusion : Insulin cannot increase leptin secretion without the presence of dexamethasone. The mechanism suggested is that insulin may increase leptin secretion in cytoplasm only after dexamethasone increases the expression of OB gene. Further studies are necessary to elucidate the mechanism of the action of insulin on leptin secretion after increasing OB gene expression by dexamethasone.

The Effect of Fibroblast Co-culture on In Vitro Maturation of Mouse Preantral Follicles

  • Kim, Chung-Hoon;Cheon, Yong-Pil;Lee, You-Jeong;Lee, Kyung-Hee;Kim, Sung-Hoon;Chae, Hee-Dong;Kang, Byung-Moon
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.269-274
    • /
    • 2013
  • This study was performed to evaluate the effects of fibroblast co-culture on in vitro maturation (IVM) of prepubertal mouse preantral follicles. The intact preantral follicles were obtained from the ovaries of 12-14 day old mice and these were cultured individually in ${\alpha}$-minimal essential medium (${\alpha}$-MEM) supplemented with 5% fetal bovine serum (FBS), $100mIU/m{\ell}$ recombinant follicle stimulating hormone (rFSH), 1% insulin-transferrin-selenium, $100{\mu}g/ml$ penicillin and $50{\mu}g/m{\ell}$ streptomycin as base medium for 12 days. A total of 200 follicles were cultured in base medium co-cultured with mouse embryonic fibroblast (MEF) (MEF group) (n=100) or only base medium as control group (n=100). Survival rate of follicles on day 12 of culture were significantly higher in the MEF group of 90.0%, compared with 77.0% of the control group (p=0.021). Follicle diameters on day 6 and 8 of the culture period were significantly larger in the MEF group than those in the control group (p=0.021, p=0.007, respectively). Estradiol levels in culture media on day 4, 6, 8, 10 and 12 of the culture period were significantly higher in the MEF group (p=0.043, p=0.021, p=0.006, p<0.001 and p=0.008, retrospectively). Our data suggest that MEF cell co-culture on IVM of mouse preantral follicle increases survival rate and promotes follicular growth and steroid production.