• Title/Summary/Keyword: Boundary value problems

Search Result 368, Processing Time 0.021 seconds

Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model

  • Youngdon Kwon;Kim, See-Jo;Kim, Seki
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.131-150
    • /
    • 2003
  • A new numerical algorithm of finite element methods is presented to solve high Deborah number flow problems with geometric singularities. The steady inertialess planar 4 : 1 contraction flow is chosen for its test. As a viscoelastic constitutive equation, we have applied the globally stable (dissipative and Hadamard stable) Leonov model that can also properly accommodate important nonlinear viscoelastic phenomena. The streamline upwinding method with discrete elastic-viscous stress splitting is incorporated. New interpolation functions classified as rational interpolation, an alternative formalism to enhance numerical convergence at high Deborah number, are implemented not for the whole set of finite elements but for a few elements attached to the entrance comer, where stress singularity seems to exist. The rational interpolation scheme contains one arbitrary parameter b that controls the singular behavior of the rational functions, and its value is specified to yield the best stabilization effect. The new interpolation method raises the limit of Deborah number by 2∼5 times. Therefore on average, we can obtain convergent solution up to the Deborah number of 200 for which the comer vortex size reaches 1.6 times of the half width of the upstream reservoir. Examining spatial violation of the positive definiteness of the elastic strain tensor, we conjecture that the stabilization effect results from the peculiar behavior of rational functions identified as steep gradient on one domain boundary and linear slope on the other. Whereas the rational interpolation of both elastic strain and velocity distorts solutions significantly, it is shown that the variation of solutions incurred by rational interpolation only of the elastic strain is almost negligible. It is also verified that the rational interpolation deteriorates speed of convergence with respect to mesh refinement.

The Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part II. Applicability of High Fidelity Helicopter Models (Indirect Method를 이용한 헬리콥터 기동비행 해석 - Part II. High Fidelity 헬리콥터 모델링의 사용 가능성)

  • Kim, Chang-Joo;Yang, Chang-Deok;Kim, Seung-Ho;Hwang, Chang-Jeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • This paper deals with the nonlinear optimal control approach to helicopter maneuver problems using the indirect method. We apply a penalty function to the integral deviation from a prescribed trajectory to convert the system optimality to an unconstrained optimal control problem. The resultant two-point boundary value problem has been solved by using a multiple-shooting method. This paper focuses on the model selection strategies to resolve the problem of numerical instability and high wait time when a high fidelity model with rotor dynamics is applied. Four different types of helicopter models are identified, two of which are linear models with or without rotor models, as well as two models which include the nonlinear mathematical model for rotor in its formulation. The relative computation time and the number of function calls for each model are compared in order to provide a guideline for the selection of helicopter model.

Analysis on the Behaviour of Foundation Using the Non-Linear Constitutive Laws (비선형구성식을 이용한 기초지반의 거동해석)

  • Jeong, Jin Seob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.253-265
    • /
    • 1993
  • This paper presents a numerical method for implementing a nonlinear constitutive material model developed by Lade, into a finite element computer program. The techniques used are based on the displacement method for the solution of axial symmetric and plane strain nonlinear boundary value problems. Laboratory behaviour of Baekma river sand(#40-60) is used to illustrate the determination of the parameters and verification of the model. Computer procedure is developed to determine the material parameters for the nonlinear model from the raw laboratory test data. The model is verified by comparing its predictions with observed data used for the determination of the parameters and then with observed data not used for the determination. Three categories of tests are carried out in the back-prediction exercise; (1) A hydrostatic test including loading and unloading response, (2) Conventional triaxial drained compression tests at three different confining pressure and (3) A model strip footing test not including in the evaluation of material parameters. Pertinent observations are discussed based on the comparison of predicted response and experimental data.

  • PDF

Development of Evaluation Indices for Ecological Restoration of Degraded Environments Near DMZ in the Republic of Korea (DMZ 주변 훼손지의 생태복원 평가지표 개발)

  • Lee, Peter Sang-Hoon;Lee, Sanghyuk;Lee, Sol Ae;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.135-151
    • /
    • 2015
  • DMZ is considered as an ecologically sensitive landscape and one of the highest biodiversity regions in the Republic of Korea. There have been, albeit the significant value, increased interests in developing this region for a variety of purposes including tourism and commemorative events. As this region has been already facing a range of problems derived from previous development, natural disaster and invasive species, the necessity for active management of ecological health within this region has been increased, which weighs the importance of executing ecological restoration. The objective of this study was to develop evaluation indices as an effective management means of properly evaluating ecological restoration and sustainably maintaining the restored conditions on a long-term scale. Through literature review existing evaluation indices related to restoration were collected, and then the most suitable indices were selected based upon two interviews and one questionnaire survey targeting experts in the relevant field to ecological restoration. They were categorized by two major division and their subclasses (Ecological base - vegetation structure & composition, habitat characteristics, soil environment; landscape ecology - connectivity, landscape patch, boundary & surrounding) and 40 indices. These indices were considered helpful to comprehensively evaluate ecological restoration on degraded environments within ecologically sensitive areas, and sustainably manage target areas by employing a long-term monitoring approach. As this result played a meaningful role in providing the fundamentals of evaluating ecological restoration, it should develop a suitable evaluation system through further research.

Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method (Coupled Eulerian-Lagrangian (CEL) 방법을 이용한 Dynamically Penetrating Anchor의 동적 거동 분석)

  • Kim, Youngho;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.895-906
    • /
    • 2014
  • A fundamental study of the dynamically penetrating anchor (DPA - colloquially known as torpedo anchor) embedded into deep seabed was conducted using measurement data and numerical approaches. Numerical simulation of such a structure penetration was often suffered by severe mesh distortion arising from very large soil deformation, complex contact condition and nonlinear soil behavior. In recent years, a Coupled Eulerian-Lagrangian method (CEL) has been used to solve geomechanical boundary value problems involving large deformations. In this study, 3D finite element analyses using the CEL formulation are carried out to simulate the construction process of dynamic anchors. Through comparisons with results of field measurements, the CEL method in the present study is in good agreement with the general trend observed by in-situ measurements and thus, predicts a realistic large deformation movement for the dynamic anchors by free-fall dropping, which the conventional FE method cannot. Additionally, the appropriate parametric studies needed for verifying the characteristic of dynamic anchor are also discussed.

Rigorous Analysis for Optical Impacts of Tapered Sidewall Profile on Trapezoidal Diffraction Grating (사다리꼴 회절격자에서 테이퍼 측면의 광학적 효과에 대한 정확한 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.151-156
    • /
    • 2020
  • To analyze the diffraction properties of optical signals and the significant impacts of tapered sidewall profile at periodic trapezoidal 2D diffraction gratings, Toeplitz dielectric tensor is first defined and formulated by 2D spatial Fourier expansions associated with trapezoidal profile. The characteristic modes in each layer is then based on eigenvalue problem, and the complete solution is found rigorously in terms of modal transmission-line theory (MTLT) to address the pertinent boundary-value problems. Based on those one, the numerical analysis is performed on how the tapered side profile of grating structures with trapezoidal refractive index distribution affects the design of a sub-wavelength grating reflector. The numerical results reveal that this tapered sidewall profile plays a critical role in determining the reflection bandwidth, the average reflectance, and the band edge.

A Study on Numerical Simulation for Dynamic Analysis of Towed Low-Tension Cable with Nonuniform Characteristics (불균일 단면을 갖는 저장력 예인케이블의 동적해석을 위한 수치해석적 연구)

  • 정동호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

Improvement of Housing Market Related Laws and Policies Causing Sudden Changes according to the Application Criteria (적용기준에 따라 큰 변화를 수반하는 주택시장관련 법률 및 정책의 개선방안)

  • Lee, Yong-Seong;Kim, Kyung-Hwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.5
    • /
    • pp.12-20
    • /
    • 2019
  • This study analyzes and suggests improvement direction for the problems of housing related market laws and policies that cause sudden changes according to the application criteria. These laws and policies include income deduction from housing subscription, monthly rent loan for housing stability, high price house, penalty points from poor quality construction, and real estate brokerage commission. Each has one or more specific values that decide application criteria causing noticeable different results. Benefit or loss can be decided when an application range is changed by a small difference of the application value near to the boundary. This study suggest to use equations instead of a certain values to remove those sudden changes and to make them steadily increasing slopes which can be lines or curves. The concept can be applied to other laws and policies that have significantly different results between criteria.

Rigorous Analysis of Periodic Blazed 2D Diffraction Grating using Eigenvalue Problem of Modal Transmission-Line Theory (모드 전송선로 이론의 고유치 문제를 사용한 주기적인 blazed 2D 회절격자의 정확한 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.173-178
    • /
    • 2019
  • To analyze the diffraction properties of optical signals by periodic blazed 2D diffraction gratings, Toeplitz dielectric tensor is first defined and formulated by 2D spatial Fourier expansions associated with asymmetric blazed grating profile. The characteristic modes in each layer is then based on eigenvalue problem, and the complete solution is found rigorously in terms of modal transmission-line theory (MTLT) to address the pertinent boundary-value problems. Toeplitz matrix of symmetric and sawtooth profiles is derived from that of asymmetric blazed grating profile, and the diffraction properties for each profile are numerically simulated. The numerical results reveal that the asymmetric and symmetric profiles behave as anti-reflection GMR filter while the sawtooth profile works better as anti-transmission one rather than anti-reflection filter.