• Title/Summary/Keyword: Boundary layer flow control

Search Result 124, Processing Time 0.04 seconds

The Numerical Study on the Supersonic Flow field with a Bump (Bump가 있는 초음속 유동장의 수치적 연구)

  • Kim S. D.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.213-218
    • /
    • 2005
  • The purpose of this study is the characteristics of an innovative inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. This study performs a comprehensive numerical effort that be directed at better understanding the three-dimensional flowfield includes shock/boundary layer interaction and growth of turbulent boundary layer that occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicates the potential capability of the three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

  • PDF

Computations on Passive Control of Normal Shock-Wave/Turbulent Boundary-Layer Interactions (수직충격파와 난류경계층의 간섭유동의 피동제어에 관한 수치 해석)

  • 구병수;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • A passive control method of the interaction between a weak normal shock-wave and a turbulent boundary-layer was simulated using two-dimensional Navier-Stokes computations. The inflow Mach number just upstream of the normal shock wave was 1.33. A porous plate wall having a cavity underneath was used to control the shock-wave/turbulent boundary-layer interaction. The flows through the porous holes and inside the cavity were investigated to get a better understanding of the flow physics involved in this kind of passive control method. The present computations were validated by some recent wind tunnel tests. The results showed that downstream of the rear leg of the $\lambda$-shock wave the main stream inflows into the cavity, but upstream of the rear leg of the $\lambda$-shock wave the flow proceeds from the cavity toward to the main stream. The flow through the porous holes did not choke fur the present shock/boundary layer interaction.

  • PDF

A passive control on shock oscillations in a supersonic diffuser (초음속 디퓨져에서 발생하는 충격파 진도의 피동제어)

  • Kim, Heuy-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1083-1095
    • /
    • 1996
  • Shock wave/boundary layer interaction frequently causes the shock wave to oscillate violently and thus the global flow field to unstabilize. In order to stabilize the shock wave system in the diffuser of a supersonic wind tunnel, the present study attempted to control the shock oscillations by using a passive control. A porous wall with the porosity of 19.6% was mounted on a shallow cavity. Experiment was made by means of schlieren optical observation and wall pressure measurements. The flow Mach number just upstream the shock system and Reynolds number based on the turbulent boundary layer thickness were 2.1 and 1.8 * 10$\^$6/, respectively. The results show that the present passive control method on the shock wave/boundary layer interaction in the supersonic diffuser can significantly suppress the oscillations of shock system, especially when the shock system locates at the porous wall.

Study on the Fluidic Thrust Vector Control Using Co-Flow Concept

  • Wu, Kexin;Jin, Yingzi;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.675-678
    • /
    • 2017
  • In the present, various methods have been employed to obtain the lesser thrust loss. Numerical simulations have been carried out for optimizing the thrust vector control system. Thrust vector control based on coflowing shear layer is an effective method to control the primary jet direction in the absence of moving parts. Thrust vector in symmetric nozzles is acquired by secondary flow injections that result to boundary layer separation. The pressure in secondary flow inlet was varied to check the deflection angle of jet flow.

  • PDF

Performance Enhancement Study Using Passive Control of Shock-Boundary Layer Interaction in a Transonic/Supersonic Compressor Cascade (천음속/초음속 압축기 익렬에서 Shock-Boundary Layer 상호작용의 수동적 제어에 의한 성능 향상 연구)

  • Kim, Sang-Deok;Gwon, Chang-O;Sa, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2944-2952
    • /
    • 1996
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 transoni $c^ersonic compressor cascade flow. First, the general characteristics of baseline cascade flow were analyzed. At freestream Mach n.1.612 and exit/inlet pressure ratio 2.15, the results from current laminar flow were compared well in suction surface with the experiment; however, not well in pressure surface. Second, numerical study of the transoni $c^ersonic compressor cascade flow demonstrated the effectiveness of a passive control by the various size cavities. A cavity under the shock foot point at the suction surface of the blades was used as a passive control. The passive control of shock-boundary layer interaction by a cavity reduced total pressure losses. The effect of cavity length and depth was studied. The total pressure loss was reduced by about 10% and the isentropic efficiency was improved slightly. The effect of cavity depth in current study(d/l = 0.05, 0.02) was not found strong. Further adequate turbulence modeling and TVD schemes would help to capture the shock more accurately and increase the effectiveness of the current shock-boundary layer interaction study using upwind flux difference splitting computational methods.thods.

Control of Shock Wave/Boundary-Layer Interactions Using S-Shaped Mesoflaps (S-자형 플랩을 이용한 충격파와 경계층 간섭현상 제어에 관한 연구)

  • Lee Yeol
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.159-160
    • /
    • 2002
  • New S-shaped aeroelastic mesoflaps are utilized to control normal shock/boundary-layer interactions. New generation of the mesoflaps is designed f3r a better rigidness and a good flow uniformity across the ulteractions. ,Major advantages of the mesoflap system can be a better total pressure recovery downstream of the interactions due to the lambda shock structure over the flap system, and a rehabilitation of the thickened boundary layer due to bleeding through a cavity underneath the flap system. Skin friction has been measured downstream of the interactions, using the laser interferometer skin friction (LISF) meter, which optically detects the rate of thinning of an oil film applied to the test surface. Various flap-thicknesses of the S-shaped mesoflap arrays are tested, and the results are compared to the solid-wall reference case. Overall, not much difference in the level of skin friction is noticed for the S-shaped flap arrays of various thicknesses, and its level is lower than the skin friction downstream of the solid-wall interaction

  • PDF

PASSlVE SHOCK CONTROL IN TRANSONIC FLOW FIELD

  • Matsuo S;Tanaka M;Setoguchi T;Kashimura H;Yasunobu T;Kim H.D
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2005
  • In order to control the transonic flow field with a shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock-boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

Passive Shock Control in Transonic Flow Field

  • Matsuo S.;Tanaka M.;Setoguchi T.;Kashimura H.;Yasunobu T.;Kim H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.187-188
    • /
    • 2003
  • In order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock - boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

  • PDF

A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(I) (응축충격파와 경계층 간섭의 피동제어(I))

  • Choe, Yeong-Sang;Jeong, Yeong-Jun;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.316-328
    • /
    • 1997
  • There were appreciable progresses on the study of shock wave / boundary layer interaction control in the transonic flow without nonequilibrium condensation. But in general, the actual flows associated with those of the airfoil of high speed flight body, the cascade of steam turbine and so on accompany the nonequilibrium condensation, and under a certain circumstance condensation shock wave occurs. Condensation shock wave / boundary layer interaction control is quite different from that of case without condensation, because the droplets generated by the result of nonequilibrium condensation may clog the holes of the porous wall for passive control and the flow interaction mechanism between the droplets and the porous system is concerned in the flow with nonequilibrium condensation. In these connections, it is necessary to study the condensation shock wave / boundary layer interaction control by passive cavity in the flow accompanying nonequilibrium condensation with condensation shock wave. In the present study, experiments were made on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of the porosity, the porous wall area and the depth of cavity on the pressure distribution around condensation shock wave. It was found that the porosity of 12% which was larger than the case of without nonequilibrium condensation produced the largest reduction of pressure fluctuations in the vicinity of condensation shock wave. The results also showed that wider porous area, deeper cavity for the same porosity of 12% are more favourable "passive" effect than the cases of its opposite. opposite.

Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine (1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구)

  • Yoon, Deok-Kyu;Kim, Jae-Choon;Kim, Dae-Hyun;Lee, Won-Suk;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.