• Title/Summary/Keyword: Boundary element

Search Result 2,873, Processing Time 0.028 seconds

Automatic Generation of 3-D Finite Element Meshes: Part(II) -Mesh Generation from Tetrahedron-based Octree- (삼차원 유한요소의 자동생성 (2) -사면체 옥트리로부터의 유한요소 생성-)

  • 정융호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.647-660
    • /
    • 1995
  • Given the tetrahedron-based octree approximation of a solid as described in part(I) of this thesis, in this part(II) a systematic procedure of 'boundary moving' is developed for the fully automatic generation of 3D finite element meshes. The algorithm moves some vertices of the octants near the boundary onto the exact surface of a solid without transforming the topology of octree leaf elements. As a result, the inner octree leaf elements can be used as exact tetrahedral finite element meshes. In addition, as a quality measure of a tetrahedral element, 'shape value' is propopsed and used for the generation of better finite elements during the boundary moving process.

Variational Formulation of Hybrid-Trefftz Plate Elements and Evaluation of Their Static Performance (하이브리드 트레프츠 평판 요소의 변분 수식화와 성능 평가)

  • Choo, Yeon-Seok;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.302-309
    • /
    • 2003
  • Hybrid-Trefftz plate bending elements are known to be robust and free of shear locking in the thin limit because of Internal displacements fields and linked boundary displacements. Also, their finite element approximation is very simple regardless to boundary shape since all element matrices can be calculated using only boundary integrals. In this study, new hybrid-Trefftz variational formulation based on the total potential energy principle of internal displacements and displacement consistency conditions at the boundary is derived. And flat shell elements are derived by combining hybrid-Trefftz bending stiffness and plane stress stiffness with drilling dofs.

Analysis of Spiral Bevel Gear by Inverse Problem (역문제에 의한 스파이얼 베벨기어의 해석)

  • 박성완
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-95
    • /
    • 2001
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of spiral bevel gear , using 2-dimension model considered near the tooth by root stress. Determine root stress is carried out far the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. And from those estimated results, the comparing estimate value with boundary element method value was discussed.

  • PDF

FINITE ELEMENT METHOD FOR SOLVING BOUNDARY CONTROL PROBLEM GOVERNED BY ELLIPTIC VARIATIONAL INEQUALITIES WITH AN INFINITE NUMBER OF VARIABLES

  • Ghada Ebrahim Mostafa
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.613-622
    • /
    • 2023
  • In this paper, finite element method is applied to solve boundary control problem governed by elliptic variational inequality with an infinite number of variables. First, we introduce some important features of the finite element method, boundary control problem governed by elliptic variational inequalities with an infinite number of variables in the case of the control and observation are on the boundary is introduced. We prove the existence of the solution by using the augmented Lagrangian multipliers method. A triangular type finite element method is used.

An Inverse Boundary Element Method for Finding Boundary Tractions of an Elastic Body (탄성체의 경계 하중을 구하기 위한 역경계요소법)

  • Lee, Sang-Hoon;Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.223-229
    • /
    • 2009
  • Most of structural analyses are concerned with the deformation and stress in a body subjected to external loads. In many fields, however, the interpretation of inverse problems is needed to determine surface tractions or internal stresses from measured displacements. In this study, the inverse processes by using the boundary element method are formulated for the evaluation of boundary tractions from displacements measured on a remote surface. Small errors in measured displacements often result in a substantial loss of accuracy of an inverse system. Numerical results show that the error in reconstructed tractions by using the inverse boundary element methods is sensitive to measurement location and noise.

Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique (최소 에너지기법을 이용한 역 열전도 경계요소법의 공동 탐지)

  • Choi, C.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.237-247
    • /
    • 1997
  • A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of mea- surement error of surface temperature obtained by infrared scanning, and then boundary element analysis is peformed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis.

  • PDF

Boundary Element Analysis of Thermal Stress Intensity Factor for Interface Crack under Vertical Uniform Heat Flow (경계요소법을 이용한 수직열유동을 받는 접합경계면 커스프균열의 열응력세기계수 결정)

  • Lee, Kang-Yong;Baik, Woon-Cheon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1794-1804
    • /
    • 1993
  • The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack tip element is derived. The numerical values of the thermal stress intensity factors for interface Griffith crack in an infinite body and for symmetric lip cusp crack in a finite and homogeneous body are compared with the previous solutions. The thermal stress intensity factors for symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material properties. But the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.

Comparison of Absorbing Boundary Conditions and Waveguide Port Boundary Condition for Waveguide Electromagnetic Analysis Using Finite Element Method (유한요소법을 이용한 도파관 전자기 시뮬레이션에 있어 흡수경계조건 및 도파관 포트 경계조건 고찰 및 비교)

  • Mincheol Jo;Woobin Park;Woochan Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.27-36
    • /
    • 2023
  • Waveguides are transmission lines that guide electromagnetic waves in the desired direction and are utilized in various fields such as medical devices, radar systems, and satellite communications. Computational electromagnetics (CEM) is essential for designing and optimizing waveguides. The finite element method (FEM), which is one of the numerical analysis techniques, is efficient in solving closed problems such as waveguides. In order to apply FEM for waveguide analysis, boundary conditions that truncate the computational domain are required. This paper performs electromagnetic simulations using absorbing boundary conditions (ABC) and waveguide port boundary conditions (WPBC) in 2/D and 3/D waveguides using the finite element method and compared their performances. The accuracy of the analysis was verified by comparing the results with HFSS, a representative commercial electromagnetic simulation software. Simulation results confirm that applying WPBC allows for smaller analysis domains than ABC.

Development of a flat shell element by using the hybrid Trefftz plane element with drilling D.O.F. and the DKMQ element (면내 회전 자유도가 추가된 hybrid Trefftz 평면 요소와 DKMQ 요소를 이용한 4 절점 평면 셸 요소의 개발)

  • 최누리;추연석;이승규;이병채
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.855-859
    • /
    • 2004
  • We develop a new four-node flat shell element which is accurate, efficient, and suitable to be used on general purpose. The new element has a hybrid Trefftz element with drilling degrees of freedom as a membrane part. We define the two independent displacement field: the internal displacement field that satisfies governing equations in the domain a priori and the boundary displacement field that is usually used as a conventional finite element method. The hybrid Trefftz variational formulation connects these two displacement fields on the boundary of the domain. To add drilling degrees of freedom, we introduce the Allman's quadratic displacement field to the boundary displacement field. As a result, our flat shell element has 6 degrees of freedom per a node. We also use the well-known DKMQ plate bending element for the plate part of the proposed element. The DKMQ element satisfies Mindlin-Reissner‘s plate theory along the edge of the element and gives proper behavior regardless of the thickness. A series of numerical experiments shows that the performance of the new element such as accuracy, rate of convergence, robustness to mesh quality, and so on.

  • PDF

Experimental and analytical study on prestressed concrete hollow slabs with asymmetric boundary conditions

  • Ma, Haiying;Lai, Minghui;Xia, Ye
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • Prestressed prefabricated hollow core concrete slabs with spans of 5 m and 10 m are commonly used since last century and still in service due to the advantage of construction convenience and durability. However, the end slabs are regularly subjected to cracks at the top and fail with brittleness due to the asymmetric boundary conditions. To better maintain such widely used type of hollow core slabs, the effect of asymmetric constraint in the end slabs are systematically studied through detailed nonlinear finite element analyses and experimental data. Experimental tests of slabs with four prestressed tendons and seven prestressed tendons with different boundary conditions were conducted. Results observe three failure modes of the slabs: the bending failure mode, shear and torsion failure mode, and transverse failure mode. Detailed nonlinear finite element models are developed to well match the failure modes and to reveal potential damage scenarios with asymmetric boundary conditions. Recommendations regarding ultimate capacity of the slabs with asymmetric boundary conditions are made to ensure a safe and rational design of prestressed concrete hollow slabs for short span bridges.