• 제목/요약/키워드: Boundary effect

검색결과 2,972건 처리시간 0.033초

흡음재의 적절한 위치 및 임피던스 선정을 통한 효율적인 실내 소음 제어 (Good Choice of Positions and Impedances of Absorptive Materials for Effective Interior Noise Control)

  • 조성호;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.791-796
    • /
    • 2003
  • Some basic guidelines for changing non-uniform boundary condition in an acoustically small cavity are presented. In this paper, modal summation technique is used to represent inside sound field. From this formulation, corner effect is defined and proposed. The corner in a cavity is good position for changing boundary condition effectively. Impedance circle with same absorption coefficient is defined to find appropriate impedance of absorptive material for better noise control performance.

  • PDF

음운구 경계와 단어빈도가 한국어 음운단어 재인에 미치는 영향 (Phonological phrase boundary and word frequency that influence the phonological word recognition)

  • 김제홍;신하선;김예슬;윤광열;김다슬;신지영;남기춘
    • 말소리와 음성과학
    • /
    • 제11권2호
    • /
    • pp.45-56
    • /
    • 2019
  • 본 연구는 한국어 말소리 단어를 처리할 때, 운율구성성분인 음운구 경계와 어휘변인인 단어빈도가 상호 작용하는지를 알아보았다. 이를 위해 4개의 음운구로 발화된 문장에서 참가자가 목표단어를 찾을 때, 음운구 경계에 걸침 유무에 따라서 생기는 방해효과를 단어찾기 과제(word monitoring task)를 통해서 조사하였다. 목표단어는 2음절의 고빈도와 저빈도 단어들이 실험자 내 조건으로, 4개의 음운구로 발화된 문장에서 각각 음운구 경계 간(목표단어: 대표, 음운구 경계: [이사회의] [반대] [표명이] [있었다]) 조건과 음운구 경계 내(목표단어: 마차, 음운구 경계: [세뱃돈은] [항상] [우리] [엄마 차지였다]) 조건이 실험자 간 조건으로 설계되었다. 실험 결과, 두 변인 중 음운구 경계의 주 효과가 유의미하였으며, 상호작용도 유의미하였다. 사후분석 결과 음운구 경계 내 그룹에서만 고빈도 목표단어를 저빈도 목표단어보다 유의미하게 빠르게 탐색하는 것으로 나타났고 음운구 경계 간 그룹에서는 목표단어의 빈도효과가 나타나지 않았다. 이 결과를 기반으로 음운 단어재인시 단어의 빈도변인이 초기 단계에 영향을 미치는 여부와 한국어 말소리 처리에서 두 변인의 중요성을 논의하였다.

해수면온도와 식생효과를 고려한 연안도시지역의 대기환경예측 (Atmospheric Environment Prediction to Consider SST and Vegetation Effect in Coastal Urban Region)

  • 지효은;이화운;원경미
    • 한국환경과학회지
    • /
    • 제18권4호
    • /
    • pp.375-388
    • /
    • 2009
  • Numerical simulation is essential to indicate the flow of the atmosphere in the region with a complicated topography which consists of many mountains in the inland while it is neighboring the seashore. Such complicated topography produces land and sea breeze as the mesoscale phenomenon of meteorology which results from the effect of the sea and inland. In the mesoscale simulation examines, the change of the temperature in relation to the one of the sea surface for the boundary condition and, in the inland, the interaction between the atmosphere and land surface reflecting the characteristic of the land surface. This research developed and simulated PNULSM to reflect both the SST and vegetation effect as a bottom boundary for detailed meteorological numerical simulation in coastal urban area. The result from four experiments performed according to this protocol revealed the change of temperature field and wind field depending on each effect. Therefore, the lower level of establishment of bottom boundary suitable for the characteristic of the region is necessary to figure out the atmospheric flow more precisely, and if the characteristic of the surface is improved to more realistic conditions, it will facilitate the simulation of regional environment.

Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.343-371
    • /
    • 2016
  • In this paper thermo-mechanical vibration analysis of a porous functionally graded (FG) Timoshenko beam in thermal environment with various boundary conditions are performed by employing a semi analytical differential transform method (DTM) and presenting a Navier type solution method for the first time. The temperature-dependent material properties of FG beam are supposed to vary through thickness direction of the constituents according to the power-law distribution which is modified to approximate the material properties with the porosity phases. Also the porous material properties vary through the thickness of the beam with even and uneven distribution. Two types of thermal loadings, namely, uniform and linear temperature rises through thickness direction are considered. Derivation of equations is based on the Timoshenko beam theory in order to consider the effect of both shear deformation and rotary inertia. Hamilton's principle is applied to obtain the governing differential equation of motion and boundary conditions. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of several parameters such as porosity distributions, porosity volume fraction, thermal effect, boundary conditions and power-low exponent on the natural frequencies of the FG beams in detail. It is explicitly shown that the vibration behavior of porous FG beams is significantly influenced by these effects. Numerical results are presented to serve benchmarks for future analyses of FG beams with porosity phases.

The effect of local topography on the seismic response of a coupled train-bridge system

  • Qiao, Hong;Du, Xianting;Xia, He;De Roeck, Guido;Lombaert, Geert;Long, Peiheng
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.177-191
    • /
    • 2019
  • The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration may lead to unsafe analysis results.

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

경사진 <100> 결정립계의 계면분리 거동에 관한 분자동역학 전산모사 (Decohesion of <100> Symmetric Tilt Copper Grain Boundary by Tensile Load Using Molecular Dynamics Simulation)

  • 뉴엔타오;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.38-41
    • /
    • 2009
  • Debonding behavior of symmetric tilt bicrystal interfaces with <100> misorientation axis is investigated through molecular dynamics simulations. FCC single crystal copper is considered in each grain and the model is idealized as a grain boundary under mechanical loading. Embedded-Atom Method potential is chosen to calculate the interatomic forces between atoms. Constrained tensile deformations are applied to a variety of misorientation angles in order to estimate the effect of grain boundary angle on local peak stress. A new parameter of symmetric grain-boundary structure is introduced and refines the correlation between grain boundary angle and local peak stress.

  • PDF

샷 경계검출 개선을 위한 칼라, 엣지, 옵티컬플로우 기반의 혼합형 알고리즘 구현 (The Implementing a Color, Edge, Optical Flow based on Mixed Algorithm for Shot Boundary Improvement)

  • 박서린;임양미
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.829-836
    • /
    • 2018
  • This study attempts to detect a shot boundary in films(or dramas) based on the length of a sequence. As films or dramas use scene change effects a lot, the issues regarding the effects are more diverse than those used in surveillance cameras, sports videos, medical care and security. Visual techniques used in films are focused on the human sense of aesthetic therefore, it is difficult to solve the errors in shot boundary detection with the method employed in surveillance cameras. In order to define the errors arisen from the scene change effects between the images and resolve those issues, the mixed algorithm based upon color histogram, edge histogram, and optical flow was implemented. The shot boundary data from this study will be used when analysing the configuration of meaningful shots in sequences in the future.

도시지형을 지나는 난류 경계층 유동의 대와류 수치모사 (LARGE-EDDY SIMULATION OF TURBULENT BOUNDARY-LAYER FLOW OVER A URBAN TOPOGRAPHY)

  • 김병구;이창훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.571-574
    • /
    • 2010
  • Large-eddy simulation has been conducted to simulate turbulent boundary-layer flows over an array of regularly distributed obstacles considering various cases of a wind incident angle. The effect of wind direction was investigated in the square cube array that periodic boundary condition was imposed. Characteristics of the turbulent flow over the obstacle array have been found to be very sensitive to the direction of prevailing wind or of mean wind or of mean pressure gradient but varied with height, specially below the urban canopy. Turbulent statistics are changed sensitively with the direction of mean pressure gradient around 10 degree.

  • PDF

한국어 낭독체 발화의 경계 인식에 있어서 묵음 휴지(Silent pause)의 역할

  • 조형실
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2006년도 추계학술대회 발표논문집
    • /
    • pp.117-119
    • /
    • 2006
  • This paper discusses the importance of silent pauses in the perception of prosodic boundaries in Korean speech. It is suggested that in speech in general, and in particular in spontaneous speech, silent pauses are neither necessary nor sufficient for the perception of prosodic boundaries. In read speech, however, there is a high correlation between the presence of a pause and the perception of a boundary. An experiment was carried out to determine whether removing the silent boundary from an extract of speech had a significant effect on the perception of boundaries in Korean read speech. Results suggest that while the presence of a silent boundary slightly reinforces the perception of a prosodic boundary, subjects are in general capable of perceiving the boundary without the silent pause.

  • PDF