• Title/Summary/Keyword: Boundary Layer Interactions

Search Result 86, Processing Time 0.028 seconds

The Numerical Study on the Supersonic Flow field with a Bump (Bump가 있는 초음속 유동장의 수치적 연구)

  • Kim S. D.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.213-218
    • /
    • 2005
  • The purpose of this study is the characteristics of an innovative inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. This study performs a comprehensive numerical effort that be directed at better understanding the three-dimensional flowfield includes shock/boundary layer interaction and growth of turbulent boundary layer that occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicates the potential capability of the three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

  • PDF

Axisymmetric Thick Turbulent Boundary Layer Around a Rotating Body of Revolution (회전하는 회전체 주위의 축대칭 두꺼운 난류경계층 연구)

  • Shin-Hyoung,Kang;Jung-Ho,Hwang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.1
    • /
    • pp.13-22
    • /
    • 1986
  • Axisymmetric turbulent thick boundary layers on a rotating body of revolution are calculated numerically in the paper. Richardson number is introduced to the mixing length to take account of swirl effects on Reynolds stresses. Interactions of the boundary layer and the external potential flow are included by adding the displacement thickness of boundary layers on the original body. Pressure distributions on the body surface are estimated by integrating normal momentum equation across the boundary layer. A model is designed and tested in the wind tunnel. Mean velocities are measured. Through the present study, swirl effects on the thick axisymmetric boundary layer development are considerable in comparison with those of non-totating cases. Rotational motion generally increase boundary layer thickness, axial skin friction coefficients, and form drags. Circumferential flow can be reversed to induce negative skin friction when the section area is reduced.

  • PDF

Plume Interference Effects on the Missile with a Simplified Afterbody at Transonic$^{}$ersonic Speeds

  • Kim, H. S.;Kim, H. D.;Lee, Y. K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.41-42
    • /
    • 2002
  • The powered missiles with very high thrust level can make highly underexpanded jet plume downstream of tile exhaust nozzle exit so that strong interactions between the exhaust plume and a free stream occur around the body at transonic or supersonic speeds. The interactions result in extremely complicated flow phenomena, which consist of plume-induced boundary layer separation, strong shear layers, various shock waves, and interactions among these. The flow characteristics are inherent nonlinear and severe unstable during the flight at its normal speed as well as taking-off and landing. Eventually, the induced boundary layer separation and pitching and yawing moments by the interactions cause undesirable effects ell the static stability and control of a missile.

  • PDF

Flow Visualization Using Thin Oil-Film in the Flow Control of Shock Wave/Turbulent Boundary-Layer Interactions (충격파와 경계층 간섭유동 제어에서 오일막을 이용한 유동가시화)

  • Lee Yeol
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.117-120
    • /
    • 2002
  • An experimental research has been carried out for flow control of the shock wave/turbulent boundary-layer interaction utilizing aeroelastic mesoflaps. Various shapes and thicknesses of the mesoflap are tested to achieve different deflections of the flap, and ail the results are compared to the solid-wall reference case without flow-control mechanism. Quantitative variation of skin friction has been measured downstream of the interactions using the laser interferometer skin friction meter, and qualitative skin friction distribution has been obtained by observing the interference fringe pattern on the oil-film surface. A strong spanwise variation in the fringe patterns with a narrow region of separation near the centerline is noticed to form behind the shock structure, which phenomenon is presumed partially related to three-dimensional flow structures associated with both the sidewalls and the bottom test surface. The effect of the shape of the cavity is also observed and it is noticed that the shape of the cavity is not negligible.

  • PDF

Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows (경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구)

  • Chang, Sung-Ha;Lee, Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.18-25
    • /
    • 2007
  • Computational study on the passive control of the oblique shock-wave/turbulent boundary-layer interaction utilizing slotted plates over a cavity has been carried out. The numerical boundary layer profile upstream of the interaction follows the compressible turbulent boundary-layer theory reasonably well, and the other results also show good agreements with the experimental observations, such as the wall surface pressures and Schlieren flow visualizations. Further, the effects of various slot configuration including number, location and angle of the slots on the characteristics of the interactions, such as the variation of the total pressures, the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through the slots, are also tested and compared.

Influence of Upstream State on the Interacting Turbulent Boundary Layer (相互作용하는 亂流 境界層에 대한 上流狀態의 影響)

  • 이덕봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.277-284
    • /
    • 1986
  • A numerical procedure (integral method) for calculating the interacting turbulent boundary layer is set up. With this method, some free interactions with various upstream conditions are simulated in order to investigate the influence of upstream state on the interacting turbulent boundary layer. The results obtained by this numerical simulation can be summarized as follows; Free interaction of upstream unstabilized (or separated) turbulent boundary layer is subcritical regardless of its external Mach number, while free interaction of upstream stabilized turbulent boundary layer has two different characteristics (subcritical, supercritical) according to the external Mach number.

Numerical Study on the Suppression of Shock Induced Separation on a Strongly Heated Wall (강하게 가열된 벽면 위에서 충격파에 의한 경계층 박리의 제거에 관한 수치 연구)

  • LEE Doug-Bong;SHIN Joon-Cheol
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.59-72
    • /
    • 1997
  • A numerical model is constructed to simulate the interactions of oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The numerical diffusion in the finite volume method is reduced by the use of a higher order convection scheme(UMIST scheme) which is a TVD version of QUICK scheme. The turbulence model is Chen-Kim two time scale model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall suction is applied at the shock foot position. The bleeding slot width is about same as the upstream boundary layer thickness and suction mass flow is 10% of the flow rate in the upstream boundary layer. The final configuration of the shock reflection pattern and the wall pressure distribution approach to the non-viscous value when wall suction is applied.

  • PDF

Interaction Between an Unstabilized Turbulent Boundary Layer and an Incident Oblique Shock Wave (不安定化된 亂流境界層 과 斜角入射衝擊波 와의 相互作용)

  • 이덕봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.158-173
    • /
    • 1985
  • An experimental investigation has been made to study the interaction between and incident oblique shock wave and an unstabilized turbulent boundary layer on a solid surface downstream of a porous surface with air injection through the porous surface. The boundary layer upstream of the interaction is unstabilized by the injection and provokes a shock wave which eventually interacts with the unstabilized boundary layer after reflecting from the upper wall of the test section. Three cases having diferent upstream Mach numbers and different shock strengthes are studied. According to the level of the unstabilization, two cases are of attached boundary layers and the other one is of a separated boundary layer. The result shows that the reflected wavey system is composed of the compression wave, expansion wave fan, and recompression wave like the ordinary interaction while the separated boundary layer strengthens the reflected expansion waves. The interactions of the attached boundary layers show a similar tendency of the upstream wall pressure distribution as that of the ordinary interacton but the pressure rise rather decays in the downstream region. In case of the separated boundary layer, the wall pressure continues to rise in the downstream as opposed ot the former cases. This indicates that the interaction region spreads out widely adn the viscous effect of the separated boundary layer smoothens the abrupt pressure increase due to the shock inpingement.

Intake Flow Characteristics of HyShot Scramjet Engine (HyShot 스크램제트 엔진의 흡입구 유동특성 연구)

  • Won Su-Hee;Choi Jeong-Yeol;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.47-52
    • /
    • 2004
  • In the design of scramjet intake for hypersonic flight, a variety of aerothermodynamics phenomena are encountered. These phenomena include blunt leading - edge effects, boundary layer development issues, transition, inviscid / viscous coupling, shock - shock interactions, shock / boundary - layer interactions, and flow profile effects. For intakes that are designed to operate within a narrow Mach number / altitude envelope, an understanding of a few of these phenomena might be required. In this work several predominant flowfield phenomena (viscous phenomena, boundary - layer separation, and combustor entrance profile) are discussed to investigate the performance of the intake at the altitude and angle of attack extremes of the HyShot flight experiment.

  • PDF