• 제목/요약/키워드: Boundary Integral Method(BIM)

검색결과 3건 처리시간 0.024초

개량역 자장간의 해석에 있어서 Neumann 및 Diichlet 경계조건을 고려한 유한요소법 및 경계적분법 (A Composite of FEM and BIM Dealing with Neumann and Dirichlet Boundary Conditions for Open Boundary magnetic Field Problems)

  • 정현교;한송엽
    • 대한전기학회논문지
    • /
    • 제36권11호
    • /
    • pp.777-782
    • /
    • 1987
  • A new composite method of finite element and boundary integral methods is presented to solve the two dimensional magnetostatic field problems with open boundary. The method can deal with the current source of the boundary integral regin where the boundary integral method is applied, and also Neumann and Dirichlet boundary conditions at the interfacial boundary between the boundary integral region and the finite element region where the finite element method is applied. The new approach has been applied to a simple linear problem to verify the usefulness. It is shown that the proposed algorithm gives more accurate results than the finite element methed under the same elementdiscretization.

  • PDF

Non-Wallsided 물체의 연직운동에 의해 발생된 파의 비선형 해석을 위한 수치해석 모형의 연구 (Numerical Modeling of Short-Time Scale Nonlinear Water Waves Generated by Large Vertical Motions of Non-Wallsided Bodies)

  • ;박종환
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.33-55
    • /
    • 1993
  • 선수충격파의 문제를 푸는데 있어서 Boundary Integral Method(BIM)의 여러가지 수치 해석방법이 검토되었으며, 특히 여러가지 Time stepping scheme, Green function, far-field 조건등에 따른 수치해석안정성과 정확성의 상관관계가 연구되었다. von Neumann 안정성해석과 matrix 안정성해석 등을 이용한 선형 안정성해석을 기초로하여, 수치해석방법의 안정성 여부를 체계적으로 조사할 수 있는 parameter(Free Surface Stability number)를 설정하고, 이 parameter의 변화에 따른 비선형 운동해석을 연구하였다. 그 결과 비선형성이 심하지 않은 기진파의 경우에서는 비선형 운동해석의 수치해석 안정성의 선형 수치해석 안정성과 큰 차이가 없음을 알 수 있게 된다.

  • PDF

다수의 주상체들의 저진폭 동위상 진동에 의한 2차 정상유동 해석 (Secondary Steady Flows Due to the Small-Amplitude In-Phase Oscillation of Multi-Cylinders)

  • 김성균
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.649-658
    • /
    • 1996
  • Small-amplitude harmonic oscillations of multi-cylinders are considered both experimentally and theoretically. For the theoretical model, the flow regime is separated into inner and outer regions. In the inner region, the flow is governed by the generalized Stokes boundary layer equation. In the outer region, the full Navier-Stokes equation for the steady streaming flow is solved numerically by using ADI scheme and FVM coupled with the boundary integral method. Flow visualization experiments are conducted by using the Laser Sheet Image Technique. The case of two circular cylinders and square cylinders with variable distances are chosen as a typical example. Although experimental results are based on the flow in the finite domain, both experimental and numerical results agree well qualitatively. As the separation of cylinders is increased, a numerical result shows the asymptotic convergence to a single cylinder case.