• Title/Summary/Keyword: Bottom-Up Model

Search Result 264, Processing Time 0.027 seconds

Effects of Angular Velocity Change on the Flow Field and Heat Transfer in the Bridgman Crystal Growth Process (Bridgman 결정성장공정에서 각속도변화가 유동장 및 열전달에 미치는 영향)

  • 문승재;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.771-783
    • /
    • 1995
  • A simplified model for the so-called ACRT(accelerated crucible rotation technique) Bridgman crystal growth was considered in order to investigate the principal effects of the periodic variation of angular velocity. Numerical solutions were obtained for Ro=0.5, Ra=4.236*10$_{6}$ and E=2.176*10$^{-3}$ . The effects of spin-up process combined with natural convection was investigated as a preliminary study. The spin-up time scale for the present problem was a little larger than that observed for homogeneous spin-up problems. Numerical results reveal that over a time scale of (H$^{2}$/.nu..omega.$_{f}$)$^{1}$2/ the forced convection due to the formation of Ekman layer predominates. When the state of rigid body rotation is attained, natural convection due to buoyancy emerges as the main driving force and them the steady-state is approached asymptotically. Based on our preliminary results with simple spin-up, several fundamental features associated with variation of rotation speed are successfully identified. When a periodic variation of angular velocity was imposed, the system response was also periodic. Due to effect of mixing, the heat transfer was enlarged. From the analysis of time-averaged Nusselt number along the bottom surface the effect of a periodic variation of angular velocity on the interface location could be indirectly identified.d.

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

A Study on the Reconstitution of CPTED Theoretical Model - Focused on the Analysis of Sustainable Development - (CPTED 이론 모델의 재구성에 관한 연구 - 지속가능한 발전 분석을 중심으로 -)

  • Liu, He;Hong, Kwan-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.302-315
    • /
    • 2020
  • The issue concerning how to integrate with the needs of sustainable development according to Crime Prevention Through Environmental Design(CPTED) theory still continues in the development process of the third-generation theory at the present stage. In addition, the issue is under worldwide controversy and discussion. What is more noteworthy is that the viewpoints under debate and discussion have an influence on the mutual effect and relationship between the theoretical model and the principles in the theoretical model, and the influence can never be underestimated. After a mastery of the overall context of theoretical development, it is believed in this study that the identity of CPTED theory development can provide a diverse understanding dimension and a communication method between the environment and environmental users. On the basis of identity the development of CPTED theory, the crime prevention design mode of CPTED needs to connect different dimensions of sustainability, with the design goal of livability as the starting point, the Top-down model to adjust the safety of the environment. By no means can the environmental condition be improved by solely relying on the previous physical design method in virtue of Bottom-up model. Therefore, in this study, the identity of CPTED will be set as the core combined with Top-down crime prevention design model to propose a visual proposal for the reconstitution of the theoretical model, rather than supplementing the application of the contents or principles at a certain stage. Hence, it is expected to provide reference and enlightenment for the sustainable development of CPTED theory.

Analysis of corrugated steel web beam bridges using spatial grid modelling

  • Xu, Dong;Ni, Yingsheng;Zhao, Yu
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.853-871
    • /
    • 2015
  • Up to now, Japan has more than 200 corrugated steel web composite beam bridges which are under construction and have been constructed, and China has more than 30 corrugated steel web composite beam bridges. The bridge type includes the simply supported beam, continuous beam, continuous rigid frame and cable stayed bridge etc. The section form has developed to the single box and multi-cell box girder from the original single box and single chamber. From the stress performance and cost saving, the span range of 50~150 m is the most competitive. At present, the design mostly adopts the computational analytical method combining the spatial bar system model, plane beam grillage model and solid model. However, the spatial bar system model is short of the refinement analysis on the space effect, such as the shear lag effect, effective distribution width problem, and eccentric load factor problem etc. Due to the similarity of the plane beam grillage method in the equivalence principle, it cannot accurately reflect the shearing stress distribution and local stress of the top and bottom plates of the box type composite beam. The solid model is very difficult to combine with the overall calculation. Moreover, the spatial grid model can achieve the refinement analysis, with the integrity of the analysis and the comprehensiveness of the stress checking calculation, and can make up the deficiency of the analytical method currently. Through the example verification of the solid model and spatial grid model, it can be seen that the calculation results for the stress and the displacement of two models are almost consistent, indicating the applicability and precision of the spatial grid model.

Run-up Height around Axis-symmetric Topographies (축 대칭 지형에서의 처오름 높이)

  • Jung, Tae-Hwa;Ryu, Yong-Uk
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.539-546
    • /
    • 2015
  • In this study, we develop numerical model using the elliptic mild-slope equation for waves propagating around axis-symmetric topographies where the water depth varies arbitrarily having zero at the coastline. The entire region is divided into three regions. In the both of inner and outer regions, an existing analytical solutions are used. In the middle region, the finite element technique is applied to the governing equation. To get the solution, the methods of separation of variables, Frobenius series are used. Developed solution is validated by comparing with previously developed analytical solution. We also investigate various cases with different bottom topographies.

A Modeling of Intermittent-Hydraulic-Gun-Aerator (간헐식 폭기형 수체순환장치 모델링)

  • Song, Mu-Seok;Seo, Dong-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.183-189
    • /
    • 2005
  • A modeling of a hydraulic-gun-aerator is proposed to set up a design procedure for such devices. The aerators are used to destroy any thermal stratification that are responsible for the degradation of water qualify of lakes. The aerator produces ascending flow by using air bubbies released instantly near the bottom of the lake into a cylindrical pipe installed vertically. Differently form the diffuser-aerators, they can pull up the cold, oxygen depleted water directly to the region of the free surface, and they are believed to work effectively especially for relatively deeper lakes. Their design procedure has not been established yet though, and we propose a model focusing on the exit flow velocity at the top of the aerator through the examination of presently operating devices.

Geometric Kernel Design of the Web-Viewer for the PDM Based Assembly DMU (PDM기반 조립체 DMU를 위한 웹뷰어 형상커널의 설계)

  • Song, In-Ho;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.260-268
    • /
    • 2007
  • Demand for the use of 3D CAD DMU systems over the Internet environment has been increased. However, transmission of commercial 3D kernels has delayed the communication effectiveness due to the kernel size. Light weight CAD geometric kernel design methodology is required for rapid transmission in the distributed environment. In this paper, an assembly data structure suitable for the top-down and bottom-up assembly models has been constructed. Part features are stored without a hierarchy so that they are created and saved in no particular order. In particular, this paper proposes a new assembly representation model, called multi-level assembly representation (MAR), for the PDM based assembly DMU system. Since the geometric kernel retains assembly hierarchy and topological information, it is applied to the web-viewer for the PDM based DMU system. Effectiveness of the proposed geometric kernel is confirmed through various case studies.

Modeling Time Pressure Effect on Visual Search Strategy (시간 압박이 시각 탐색 전략에 미치는 영향 모델링)

  • Choi, Yoonhyung;Myung, Rohae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.377-385
    • /
    • 2016
  • The previous Adaptive Control of Thought-Rational (ACT-R) cognitive architecture model has a limitation in that it cannot accurately predict human visual search strategy, because time effect, one of important human cognitive features, is not considered. Thus, the present study proposes ACT-R cognitive modeling that contains the impact of time using a revised utility system in the ACT-R model. Then, the validation of the model is performed by comparing results of the model with eye-tracking experimental data and SEEV-T (SEEV-Time; SEEV model which considers time effect) model in "Where's Wally" game. The results demonstrate that the model data fit fairly well with the eye-tracking data ($R^2=0.91$) and SEEV-T model ($R^2=0.93$). Therefore, the modeling method which considers time effect using a revised utility system should be used in predicting the human visual search paradigm when the available time is limited.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Sung;Jeon, Min-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.217-225
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

  • PDF

Development of Fatigue Model of Concrete Pavement Considering Environmental Loading (환경하중을 고려한 콘크리트 포장 피로모형의 개발)

  • Lim, Jin Sun;Kim, Yeon Bok;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.819-829
    • /
    • 2008
  • Fatigue cracking occurs over long time period because dynamic strength of slab continuously decreases by vehicle loading repetitively applied to the concrete pavement. To more accurately predict the fatigue life of the concrete pavement, the stress due to environmental loading should be considered prior to calculating the stress due to the vehicle loading because the stress due to temperature and moisture distribution always exists within the slab. Accordingly, a new fatigue model considering the environmental loading was developed in this research by evaluating factors of existing fatigue models most widely used and by making data points from the models. The applicability of the new model was evaluated by performing a fatigue analysis on the general concrete pavement structure using local climatic and traffic conditions in Korea. It was concluded that the top-down cracking due to the tensile stress at top of the slab is dominant cause of the fatigue failure than the bottom-up cracking occurred at bottom of the slab. More advanced fatigue analysis considering vehicle speed is expected by developing this study.