• Title/Summary/Keyword: Bottom trawl net

Search Result 51, Processing Time 0.026 seconds

Flow Resistance and Modeling Rule of Fishing Nets 5. Total Resistance of Bottom Trawl Nets Subjected Simultaneously to the Water Flow and the Bottom Friction (그물어구의 유수저항과 모형수칙 5. 저층 트롤그물의 예망저항)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.700-707
    • /
    • 1997
  • In order to express exactly the total resistance of bottom trawl nets subjected simultaneously to the water flow and the bottom friction, the influence of frictional force was added to the formular for the flow resistance of trawl nets obtained by previous papev and the experimental data obtained by other investigators were analyzed by the formula. The analyzation produced the total resistance R (kg) expressed as $$R=4.5(\frac{S_n}{S_m})^{1.2}S\;v^{-1.8}+20(Bv)^{1.1}$$ where $S(m^2)$ was the wall area of nets, $S_m\;(m^2)$ the cross-sectional area of net mouths, $S_n\;(m^2)$ the area of nets projected to the plane perpendicular to the water flow, B (m) the made-up circumference at the fore edge of bag parts, and v(m/sec) the dragging velocity. From the viewpoint that expressing R in the form of $R=kSv^2$ was a usual practice, however, the resistant coefficient $k(kg{\cdot}sec^2/m^4)$ was compared with the factors influencing it by reusing the experimental data. The comparison gave that the coefficient k might be expressed approximately as a function of BL only and so the resistance R (kg) as $$R=18{\alpha}B^{0.5}L\;v^{1.5}$$ where L (m) was the made-up total length of nets and $\alpha=S/BL$. But the values of a in the nets did not deviate largely from their mean, 0.48, for all the nets and so the general expression of R (kg) for all the bottom trawl nets could be written as $$R=9\;B^{0.5}\;L\;v^{1.5}$$.

  • PDF

Distribution Characteristics of Bottom Litter in Chinhae Bay, Korea

  • Kim Jong-Hwa;Kim Sam-Kon;Kim Jong-Kyu
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.3
    • /
    • pp.150-158
    • /
    • 2001
  • A study on the amount, distribution and item of bottom litter on the sea-bed was conducted by the bottom trawl net at 5 sections in Chinhae Bay over a year. The number and weight of litter found per unit of swept area (1 hectare) in each section were estimated as the range of 8.76-80.63 pieces, 3.51-108.39kg, respectively. The seasonal variation of high (Aug., '97) and low season (Feb., '98) in quantity was small, and it was about 2 times as the range of 24.58- 52.61 pieces/ha between them. But the weight variation between high (Apr., '98) and low season (Aug., '97) was very large, about 30 times as the range of 4.06-119.64kg/ha. The largest and second composition on the weight of bottom litter in Chinhae Bay are $76\%$ in other-litter with compound and bulky materials, and $93\%$ in fishing gear, respectively. The relationship between quantity and weight of bottom litter was not occurred due to the variety of specific gravity. Of the fishing gear, fishing nets was portioned to be 2.571kg/ha in weight and $84.9\%$ in composition. So these results prove that fishing nets were discarded as the most part of fishing gear during fishing activity in the bay. The largest composition of the soiled state classified into 3 styles in overall bottom litter was $69\%$ in very soiled state, and the second one of $28\%$ in the soiled state. On the other hand, new state is very small and portioned in $3.0\%$ of all. Chinhae Bay was estimated to be about 10 times in quantity and about 36 times in weight of Tokyo Bay. Therefore, these suggest that Chinhae Bay is a very serious polluted estuary caused by the bottom litter such as heavy and bulky wastes, fishing gear.

  • PDF

Fishing investigation with trammel nets by mesh size in the Korean deep-water of the East Sea (삼중자망에 의한 동해 심해 수산자원의 망목별 어획특성)

  • Park, Hae-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • The investigation for species composition and catch in the Korean deep-water of the East Sea (also known as Sea of Japan) was carried out with trammel nets of 7 mesh sizes (6.1~24.2cm) offshore Donghae (2006) and Yangyang (2007) of Korea. The catches were 1,268kg and composed of 37 species between 200m and 1,200m in depth. The principal species caught were Taknka's snailfish, salmon snailfish, red snow crab, hunchback sculpin, snow crab, spinyhead sculpin, Tanaka's eelpout, Alaska cod and so on. Those were target fish for commercial value except salmon snailfish. The mesh sizes for the largest catch were 10.6cm and 15.2cm in the fishing ground of Donghae and Yangyang, respectively. The habitat of snow crab was shallower than that of red snow crab in both areas. Trammel net enabled to investigate fish in deep-water with small fishing vessel and rather cheap expenses in contrast to bottom trawl that required too much of it. With increasing inner mesh size of trammel net the mean size of some principal species such as Taknka's snailfish, spinyhead sculpin, hunchback sculpin, Pacific cod, snow crab, red snow crab and hybrid between snow crab and red snow crab tended to be large in certain range of mesh size.

Study on the Midwater Trawl Available in the Korean Waters ( V ) - Opening Efficiency of the Otter Board with a Large Float on the Top - (한국 근해에 있어서의 중층 트로올의 연구 ( V ) - 전개판에 대형 뜸을 달았을 때의 전개성능 -)

  • Lee, Byong-Gee;Kim, Min-Suk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.2
    • /
    • pp.78-82
    • /
    • 1988
  • Near sea trawlers of Korea sometimes catch pelagic fishes like file fish by using midwater trawl gear even though usually catch bottom fish. It is reasonable to use the specific otter board as well as specific net in bottom trawling and in midwater trawling respectively. But, the trawlers are so small ranging 100 to 120GT, 700 to 100ps that it is very complicated to use different otter board for bottom trawling and for midwater trawling. The otter board for bottom trawling. is also used for the midwater trawling without any change even though the net is changed into the specific one. Although the otter board in the midwater trawling should be lighter than that for bottom trawling, to use otter board for bottom trawling directly for the midwater trawling without any change makes the net easily touch the sea bed and also make the horizontal opening of the otter boards be limited owing to the length of warp in the southern sea of Korea, main fishing ground of midwater trawling, which is 100m or so in depth. That is why the otter board for the midwater trawling should be made lighter than that in the bottom trawling, even if temporary. The authors carried out an experiment to achieve this purpose by attaching a large styropol float on the top of the otter board. In this experiment, underwater weight of the otter board was 630kg and buoyancy of the float was 510kg. To determine the depth and horizontal opening of the otter board, two fish finder was used. A transmitter of 50KHz fish finder was set downward through the shoe plate of otter board to determine the elevation of otter board from the sea bed, and a transmitter of 200KHz fish finder was set sideways on the starboard otter board to be able to detect the distance between otter boards. The obtained results can be summarized as follows: 1. The actual towing speed in the experiment varied 1.1 to 1.8 m/sec. 2. The depth of otter board was within 41 to 25m with float on the top and 45 to 26m without float in case of the warp length 100m, whereas the depth 68-44m with float and 74-46m without float in case of the warp length 150m. This fact means that the depth with float was 9-4% shallower than that without float. 3. The horizontal opening between otter boards was within 34-41m with float and 30-38m without float in case of the warp length 100m, whereas the opening was 44-50m with float and 37-46m without float in case of the warp length 150m. This fact means the opening with float was 10% greater than that without float in case of the warp length 100m, and 15% greater in case of the warp length 150m. 4. The horizontal opening between wing tips by using the otter board with float was 1m greater than by without float in case of the warp length 100m, whereas the opening by with float was 2m greater than by without float in case of warp length 150m. From this fact, it can be estimated that the effective opening area of the net mouth by using the otter board with float could be made 10% greater than by without float in case of warp length 100m, whereas the area with float 20% greater than by without float in case of warp length 150m.

  • PDF

사각형강목의 끝자루를 이용한 트롤어구의 어획선택성 연구 ( I ) - 사각형강목의 어획선택성 - ( Studies on the Selectivity of the Trawl Net With the Square Mesh Cod-End ( 1 ) - Selectivity of the Square Mesh Cod-End - )

  • Lee, Ju-Hee;Kim, Sam-Kon;Kim, Jin-Kun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.161-171
    • /
    • 1994
  • Mesh selection analysis for the trawl net were carried out at the Southern Korean Sea and the East China Sea during the 1992-1994 years by the training ship Seabada of the National Fisheries University of Pusan, using A type (51.2mm), B type (70.2mm), C type (77.6mm), D type (88.0mm) square mesh cod-ends. The fishing trials were made using bottom trawl of the trouser type cod-end with cover net. Selection curves and selection parameters were calculated by a logistic model for Sphyraena pinguis, Pampus argenteus, Trachurus japonicus, Pagrus major, Callanthias japonicus, Trichiurus lepturus. The results obtained are summarized as follows: 1. Red barracuda : Selection range and fifty percent selection length in the A type was 115.8mm, 292.8mm, respectively. 2. Harvest fish : Each selection range and fifty percent selection length in the B. C. and D type was 37.7mm, 113.8mm : 40.1mm, 131.7mm and 64.8mm, 148.6mm, respectively. Selection parameters of master curve were : slope, 3.81 : intercept, -6.4. Optimum mesh size was 89.3mm. 3. Horse mackerel : Each selection range and fifty percent selection length in the A, B, C and D type was 43.0mm, 148.3mm : 60.7mm, 183.2mm, 214.5mm and 91.4mm, 254.9mm, respectively. Selection parameters of master curve were : slope 2.30 : intercept, -6.4. Optimum mesh size was 66.8mm. 4. Red seabrem : Selection range and fifty percent selection length in the D type was 42.7mm, 203.4mm, respectively. 5. Yellowsail red bass : Selection range and fifty percent selection length in the A type was 84.0mm, 110.6mm, respectively. 6. Hair tail : Each selection range and fifty percent selection length in the A, B and C type was 59.7mm, 176.0mm : 100.9mm, 250.7mm and 178.6mm, 307.0mm, respectively. Selection parameters of master curve were : slope, 1.54 : intercept, -5.4. Optimum mesh size was 57.5mm.

  • PDF

Study on the Improvement of Stow Net Fishing Technique and the Enlargement of Fishing Ground to the Distant Waters - 1 . Model Experiment of the Net - (안강망어법의 개량과 어장의 원해로의 확대를 위한 연구 - 1 . 어구의 모형실험 -)

  • Lee, Byoung-Gee;Kim, Jin-Kun;Lee, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.2
    • /
    • pp.55-64
    • /
    • 1988
  • Stow nets have widely been used in the western sea of Korea from the olden age. The original structure of a stow net is a large square-sectional bag net made of 4 netting panels, and the front fringes of top and bottom panels are connected to the top and bottom beams respectively. Wire ropes, which is originated from the holding anchor are gradually forked and biforked, and finally 4 pieces of wire rope (biforked pendants) are jointed to each beam. Much convenience caused by long and heavy beams were problemed, then some studies have been carried out to improve the net since 1930's. The most effective improvement were achieved in 1980 by Mr. Han and his colleagues. The key point of improvement was that the beams were removed and the belt shaped shearing device made by canvas was attached to the side panels, the head rope and ground rope to the front fringe of top and bottom panel, and biforked pendants are joined to the shearing device. Even though this is the epoch-making improvement of a stow net, the further study should be required to find out more effective method. The authors carried out a model experiment on the stow net to determine the vertical and horizontal opening of a net mouth, and also examine the front, top and side-view configuration of the net. The model net was constructed depending on the Similarity Law of Fishing Gear in 1/10 and 1/20 scale and set against to the current at shallow and speedy flowing channel. The vertical and horizontal openings were determined by using scaled bamboo poles, and the configuration was observed by using specially prepared observation platform and underwater observation glass, and also photographed by using specially prepared underwater photographic equipment. The results obtained can be summarized as follows: 1. The opening height and width of the shearing device varied in accordance with the relative length of the biforked pendants. Considering the height and width of shearing device in 6 cases of the arrangement system of biforked pendants, the best result was obtained in the case that the 2nd, 3rd and 4th pendents from the bottom-most was 5%, 9% and 4% longer than that. 2. On the top-view configuration the excessive deformation of head rope and ground rope were observed. In the actual net, 54m long head rope and ground rope were attached to the front fringe of top and bottom panels so that the head rope may be lifted to make the net mouth open highly. But actually the head rope and the ground rope are streamed backward without any lift, and also the netting followed the ropes were deformed until the 2/5 in the whole length of the net. This deformation may be guessed to disturb the entrance of fish school into the net and also caused the net to get caught by obstacles in the sea bed and to be broken largely. 3. Hydrodynamic resistance R of the actual net may be deduced as R(kg)=29.2$\times$103 v1.65. It is also expressed as R(kg)=5.9$\times$d/l$\times$ab v1.65. depending on the formula deduced by Koyama to estimate the resistance of trawl nets, where d/l denote the ratio between diameter of netting twine and length of mesh leg in every part of side panel, a and b, the stretched circumference of the mouth and the stretched length of the net, respectively.

  • PDF

Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net (III) - Opening Efficiency of the Model Net attaching the Kite - (무부자 쌍끌이 중층망 어구어법의 개발 (III) - 카이트를 부착한 모형어구의 전개성능 -)

  • 유제범;이주희;이춘우;권병국;김정문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.197-210
    • /
    • 2003
  • The non-float midwater pair trawl was effective in the mouth opening and control of the working depth in midwater and bottom. In contrast, we confirmed that it was difficult to keep the net at surface above 30 m of the depth by means of the full scale experiment in the field and the model test in the circulation water channel. To solve this problem, the kites were attached to the head rope of the non-float midwater pair trawl. In this study, four kinds of the model experiments were carried out with the purpose of applying the kite to the korean midwater pair trawl. The results obtained can be summarized as follows: 1. The working depth of the non-float midwater pair trawl with the kite was shallower than that of the proto type and non-float type. The working depth of the kite type was approximately 20m with 2 kites and about 5m with 4 kites under 4.0 knot. The working depth was almost constant but the depth of the head rope sank approximately 15m and 10m according to the increase in the front weight and the wing-end weight, respectively. The changing aspect of the working depth was constant, but the depth of the head rope sank approximately 22m according to the increase in the lower warp length (dL). 2. The hydrodynamic resistance of the kite type was almost increased in a linear form in accordance with the flow speed increase from 2.0 to 5.0 knot. The increasing grate of the hydrodynamic resistance tended to increase in accordance with the increase in flow speed. The hydrodynamic resistance of the kite type was larger approximately 5~10 ton larger than that of the non-float type and the proto type. The hydrodynamic resistance of the kite type increased approximately 3ton with the changing of the front weight from 1.40 to 3.50 ton and approximately 4 ton with the changing of the wing-end weight from 0 to 1.11 ton and approximately 5.5 ton with the changing lower warp length (dL) from 0 to 40 m, respectively. 3. The net height of the kite type was increased approximately 10 m with the change in the kite area from $2,270mm^2$ to 4,540 $\textrm{mm}^2$. The net height of the kite type was aproximately 50 m and 30 m larger than that of the proto type and the non-float type, respectively. The changed aspect of the net width was approximately 5m with the variation of the flow speed from 2.0 to 5.0 knot. 4. The filtering volume of the kite type was larger than that of the proto type and the non-float type by 28%, 34% at 2.0 knot of the flow speed and 42%, 41% at 3.0 knot, and 62%, 45% at 4.0 knot, and 74%, 54% at 5.0knot, respectively. The optimal towing speed was approximately 3.0 knot for the proto type and was over 4.0 knot for the non-float type, and the optimal towing speed reached 5.0 knot for the kite type. 5. The opening efficiency of the kite type was approximately 50% and 25% larger than that of the proto type and the non-float type, respectively.

Estimation on Optimum Fishing Effort of Walleye Pollock Fishery in the East Coast of Korea : Based on the Economic Analysis between Danish Seine Fishery and Trawl Fishery for Walleye Pollock (한국 동해 명태 어업의 적정어획노력량 추정 -동해구기선저인망어업과 동해구트롤어업의 경제성분석을 근거로-)

  • 이장욱
    • The Journal of Fisheries Business Administration
    • /
    • v.22 no.2
    • /
    • pp.75-99
    • /
    • 1991
  • A quantitative analysis was carried out to monitor the commercial yield level of walleye pollock Theragra chalcogramma in the east coast of Korea, based on available data on catch and fishing effort, catch per unit of effort including fish prices from 1911 to 1988, using a traditional yield model. The results from the quantitative assessment were based to estimate maximum economic yield (MEY) and optimal fishing effort (E-opt) at MEY. On the other hand, interaction aspects between danish seine fishery and trawl fishery mainly targeting walleye pollock in the east coast of Korea were studied to predict optimal situation in fishing effort level from economic point of view which gives the most benefits to the two fisheries. Total production of walleye pollock in 1911 when its catch record was begun for the first time was about 12, 000 metric tons(M/T), and then the catch trend maintained nearly at the level of 50, 000 M/T per annum, showing a decreasing trend until 1930. The highest production from historical data base on walleye pollock fishery statistics was from the years in 1939 and 1940, about 270, 000 M/T and 26, 000 M/T, respectively. No production of the fish species was recorded during the years from 1943 to 1947, and from 1949 to 1951. From 1952 onwards annual production was only available from the southern part of 38$^{\circ}$N in the east coast. During two decades from 1952 to 1970, the production had sustained about less than 30, 000 M/T every year. Annual production showed an increasing trend from 1971, reaching a maximum level of approximately 162, 000 M/T in 1981. Afterwards, it has deceased sharply year after year and amounted to 180, 000 M/T in 1988. The catch composition of walleye pollock for different fishery segments during 1970~1988 showed that more than 70% of the total catch was from danish seine fishery until 1977 but from 1978 onwards, the catch proportion did not differ from one another, accounting for the nearly same proportion. Catch per unit of effort (CPUE) for both danish seine fishery and trawl fishery maintained a decline tendency after 1977 when the values of CPUE were at level of 800 kg/haul for the former fishery and 1, 300 kg/haul for the latter fishery, respectively. CPUEs of gillnet fishery during 1980~1983 increased to about 3.5 times as high value as in the years, 1970~1979 and during 1987~1988 it decreased again to the level of the years, 1970~1978. The bottom longline fishery's CPUE wa at a very low level (20 kg/basket) through the whole study years, with exception of the value (60 kg/basket) in 1980. Fishing grounds of walleye pollock in the east coast of Korea showed a very limited distribution range. Danish seine fishery concentrated fishing around the coastal areas of Sokcho and Jumunjin during January~February and October~December. Distributions of fishing grounds of trawl fishery were the areas along the coastal regions in the central part of the east coast. Gillnet and bottom longline fisheries fished walleye pollock mainly in the areas of around Sokcho and Jumunjin during January~February and December. Relationship between CPUEs' values from danish seine fishery and trawl fishery was used to standardize fishing effort to apply to surplus production model for estimating maximum sustainable yield (MSY) and optimum fish effort (F-opt) at MSY. The results suggested a MSY of 114, 000 M/T with an estimated F-opt of 173, 000 hauls per year. Based on the estimates of MSY and F-opt, MEY was estimated to be about 94, 000 M/T with a range of 81, 000 to 103, 000 M/T and E-opt 100, 000 hauls per year with a range of 80, 000 to 120, 000 hauls. The estimated values of MEY and E-opt corresponded to 82% of MSY and 58% of F-opt, respectively. An optimal situation in the fishing effort level, which can envisage either simultaneously maximum yield or maximum benefit for both danish seine fishery and trawl fishery, was determined from relationship between revenue and cost of running the fleet : the optimal fishing effort of danish seine fishery was about 52, 000 hauls per year, corresponding to 50 danish seiners and 27, 000 hauls per year which is equal nearly to 36 trawlers, respectively. It was anticipated that the net income from sustainable yield estimated from the respective optimal fishing effort of the two fisheries will be about 3, 800 million won for danish seine fishery and 1, 000 million won for trawl fishery.

  • PDF

Fish Stock Assessment by Hydroacoustic Methods and its Applications - I - Estimation of Fish School Target Strength - (음향에 의한 어족생물의 자원조사 연구 - I - 어군반사강도의 추정 -)

  • Lee, Dae-Jae;Shin, Hyeong-Il;Shin, Hyong-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.142-152
    • /
    • 1995
  • The combined bottom trawl and hydroacoustic survey was conducted by using the training ship Oshoro Maru belong to Hokkaido University in November 1989-1992 and the training ship Nagasaki Maru belong to Nagasaki University in April 1994 in the East China Sea, respectively. The aim of the investigations was to collect the target strength data of fish school in relation to the biomass estimation of fish in the survey area. The hydroacoustic survey was performed by using the scientific echo sounder system operating at three frequencies of 25, 50 and 100kHz with a microcomputer-based echo integrator. Fish samples were collected by bottom trawling and during the trawl surveys, the openings of otter board and net mouth were measured. The target strength of fish school was estimated from the relationship between the volume back scattering strength for the depth strata of bottom trawling and the weight per unit volume of trawl catches. A portion of the trawl catches preserved in frozon condition on board, the target strength measurements for the defrosted samples of ten species were conducted in the laboratory tank, and the relationship between target strength and fish weight was examined. In order to investigate the effect of swimbladder on target strength, the volume of the swimbladder of white croaker, Argyrosomus argentatus, sampled by bottom trawling was measured by directly removing the gas in the swimbladder with a syringe on board. The results obtained can be summarized as follows: 1.The relationship between the mean volume back scattering strength (, dB) for the depth strata of trawl hauls and the weight(C, $kg/\textrm{m}^3$) per unit volume of trawl catches were expressed by the following equations : 25kHz : = - 29.8+10Log(C) 50kHz : = - 32.4+10Log(C) 100kHz : = - 31.7+10Log(C) The mean target strength estimates for three frequencies of 25, 50 and 100 kHz derived from these equations were -29.8dB/kg, -32.4dB/kg and -31.7dB/kg, respectively. 2. The relationship between target strength and body weight for the fish samples of ten species collected by trawl surveys were expressed by the following equations : 25kHz : TS = - 34.0+10Log($W^{\frac{2}{3}}$) 100kHz : TS = - 37.8+10Log($W^{\frac{2}{3}}$) The mean target strength estimates for two frequencies of 25 and 100 kHz derived from these equations were -34.0dB/kg, -37.8dB/kg, respectively. 3. The representative target strength values for demersal fish populations of the East China Sea at two frequencies of 25 and 100 kHz were estimated to be -31.4dB/kg, -33.8dB/kg, respectively. 4. The ratio of the equivalent radius of swimbladder to body length of white croaker was 0.089 and the volume of swimbladder was estimated to be approximately 10% of total body volume.

  • PDF

쌍끌이 중층트롤어법의 연구 ( 1 ) - 모형어구의 망구형상에 관하여 - ( A Study on the Pair Midwater Trawling ( 1 ) - Mouth Performance of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.29-44
    • /
    • 1995
  • A model experiment on the pair midwater trawl net applicable to 800 PS class Korean pair bottom trawlers was carried out in the special-prepared experimental thank. the tank was prepared as a reverse trapezoid shape in its vertical section by digging out flat soil. The dimension of the tank showed the 9.6 W$\times$43.0 L(m) of the upper fringe and the 4.8 W$\times$38.0 L(m) of the bottom with 3.0m in depth. The depth of water was maintained 2.7m during experiment. The model net was prepared based on the Tauti's similarity law of fishing gear in 1/30 scale considering the dimension of the experimental tank. Mouth performance of the model net during towing were determined by the photographs taken in front of the net mouth with the combinations of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Vertical opening of the model nets A and B was varied in the range of 0.18~0.88 m and 0.21~0.78 m (which can be converted into 5.4~26.4m and 6.3~23.4 m in the full-scale net) respectively, and was varied predominantly by towing speed. Vertical opening (H which is appendixed m for the model net. f for the full-scale net. A and B for the types of the model net) can be expressed as the function of towing velocity$V_t$as in the model net $V_t$ : m/ sec)$H_{mA}$=1.67$e^{-1.65V_t}$ $H_{mB}$=1.15$e^{-1.13V_t}$, in the full-scale net ($V_t$ : k't) $H_{fA}$=50.27$e^-0.37V_t$ $H_{fB}$=34.46$e^{-0.26Vt}$. 2. Horizontal opening of the model nets An and b was varied in the range of 1.03~1.54m and 1.04~1.55 m (which can be converted into 30.9~46.2 m and 31.2~46.5m in the full-scale net) respectively, and was varied predominantly by distance between paired boats. Horizontal opening (W, appendixes are as same as the former) an be expressed as the function of distance between paired boats $D_b$as in the model net $W_{mA}$=0.69+0.09$D_b$ $W{mB}$=0.73+0.09$D_b$, in the full-scale net $W_{fA}$=20.81+0.09$D_b$ $W_{fB}$=22.11+0.09$D_b$ 3. Net opening area of the model net A and B was varied in the range of 0.28~1.04 $m^2$ and 0.33~0.94$m^2$(which can be converted into 252~936$m^2$ and 297~846$m^2$ in the full-scale net) respectively, and was varied predominantly by towing velocity. Net opening area ($S$, appendixes are as same as the former) van be expressed as the function of towing velocity$V_t$ as in the model net $v_t$ : m/sec) $S_{Ma}$=2.01$e^{-1.54V_T}$ $S_{mA}$=1.40$e^{-1.65V_t}$, in the full-scale net ($V_t$ : k't) $S_{fA}$=1.807$e^-0.35V_t$ $S_{fA}$=1.265$e^{-0.24V_t}$. 4. Filtering volume of the model nets A and B was varied in the range of 0.32~0.55 $m^3$ and 0.37~0.55$m^3$(which can be converted into 8.640~14.850 $m^3$ and 9.990~14.850$m3$in the full~scale net) respectively, and was predominantly varied by towing speed. filtering volume of the model net-A showed the maximum at the towing speed 0.69 m/sec(3 k't in the full-scale net), compared with that of the model net B showed at 0.92 m/sec(4 k't in the full-scale net).

  • PDF