• 제목/요약/키워드: Bottom outlet

검색결과 65건 처리시간 0.024초

CFD를 활용한 크래프트 회수보일러 내부 노즈 아치 구조에 따른 열교환 효율 분석 (Analysis on the Heat Exchange Efficiency of Kraft Recovery Boiler by Nose Arch Structure Using CFD)

  • 장용호;박현도;임경필;박한신;김정환;조형태
    • 공업화학
    • /
    • 제32권2호
    • /
    • pp.149-156
    • /
    • 2021
  • 크래프트 회수보일러(kraft recovery boiler)는 펄프 공정에서 생성된 흑액을 연소하여 발전용 스팀을 생산하는 장치이다. 특히 연소로 상단부에 존재하는 과열기(superheater)는 포화 증기가 연소가스와 열교환을 통해 과열 증기로 전환되는 구간으로, 연소가스와 포화 증기 사이의 열교환 효율 향상은 발전용 과열 증기 생산량 증가 및 발전 효율이 증가하므로 매우 중요하다. 과열기 하단부에 위치한 노즈 아치는 과열기의 부식의 원인이 되는 연소로에서 발생한 복사열을 막는 중요한 역할을 하지만, 연소가스 유동을 방해하여 포화증기와 열교환이 끝난 저온의 연소가스가 과열기를 나가지 못하고 재순환되어 열교환 효율을 저하시키는 직접적인 원인이 된다. 따라서 본 연구에서는 CFD를 활용하여 노즈아치 구조에 따른 재순환 영역의 크기와 연소가스 출구 온도를 비교하였다. 결과적으로 노즈 아치 하단부 각도를 106.5°에서 150°로 변경할 경우 연소가스의 재순환 영역이 감소하여 연소가스와 과열기 사이의 열교환 효율이 10.3% 향상되는 것을 확인하였다.

혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구 (Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel)

  • 박정연;고범석;김기영;이동목;윤길상
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석 (Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis)

  • 심병완;박찬희;조희남;이병대;남유진
    • 자원환경지질
    • /
    • 제49권6호
    • /
    • pp.459-467
    • /
    • 2016
  • 300 m 이상의 장심도 지중열교환기는 도심지나 넓은 부지를 확보가기 어려운 지역에 지열냉난방 시스템을 경제적으로 설치하는데 유리하다. 그러나 실제 시공에서는 여러 가지 문제들로 인하여 보편적으로 시도되지 않았고, 일반적으로 100 ~ 200m 심도로 설치되어 왔다. 본 연구에서는 일반적인 시추공 직경 150 mm에 U 파이프는 50A 규격으로 외경 50 mm의 300 m 심도로 지중열교환기를 설치하였다. 고밀도 PE관은 단위 길이당 비중이 $0.94{\sim}0.96g/cm^3$으로 지열공 내부에 채워진 지하수 영향으로 부력이 존재하여, 이를 개선하기 위해 4.6 kg 무게의 금속으로 제작된 하중밴드 10개조를 설치하여 부력의 영향을 감소시켰다. 지중열교환기의 길이 산정 및 성능평가를 위한 기초조사로서 지반조사 및 열응답실험이 실시되었다. 지반내 온도구배는 100 m 심도까지는 주변 지하수 이용에 의한 영향 등으로 $15^{\circ}C$ 정도의 분포를 보이며 그 하부는 $1.9^{\circ}C/100m$의 지온증온율을 나타내고 있다. 열응답실험은 기존에 설정된 표준 방식으로 48 시간 진행되었으며 평균 주입전력은 17.5 kW이며 평균 순환수 유량은 28.5 l/min, 그리고 평균 입출구 온도차는 $8.9^{\circ}C$로 나타났다. 측정된 지중열전도도는 3.0 W/mk이며, 공내열저항은 0.104 mk/W로 나타났다. Stepwise 평가에서 지중열전도도 변화는 초기 13시간을 제외한 이후에는 표준편차가 0.16으로 매우 안정된 값으로 수렴한 것으로 나타났다. 그리고 공내열저항의 민감도를 분석한 결과 파이프의 구경과 그라우팅 물질의 열전도도가 증가함에 따라 그 값이 미미하게 감소하는 경향을 나타내었다.

단동온실 내 공기순환팬 사용에 따른 온습도 및 에너지소비량 비교 분석 (Analysis of Air Temperature and Humidity Distributions and Energy Consumptions according to Use of Air Circulation Fans in a Single-span Greenhouse)

  • 이태석;강금춘;김형권;문종필;오성식;권진경
    • 생물환경조절학회지
    • /
    • 제26권4호
    • /
    • pp.276-282
    • /
    • 2017
  • 본 연구는 방울토마토 재배 단동온실에 공기순환팬을 설치하고 공기순환팬이 온실 내 온도 및 습도 분포, 에너지소비량에 미치는 영향을 분석하였다. 공기순환팬은 날개 크기 230mm의 Stainless 팬으로, Lee 등(2016)의 연구결과를 참고하여 시험구 온실에 9m 간격으로 총 18대를 설치하였다. 온실 내부 온습도는 온실 길이방향으로 4등분하여 1/4 지점과 3/4 지점의 중앙에 센서를 설치하고 0.8m, 1.8m 높이 2곳의 온습도를 난방을 주로 하는 야간(오후 6시~다음 날 오전 7시)에 5분 간격으로 측정하였다. 에너지소비량은 각 온실에 위치한 온수펌프의 유량, 온수 출수부와 환수부의 온도차를 측정하여 계산하였다. 공기순환팬을 사용하지 않았을 때 측점 간 온도차 및 습도차의 평균값은 $0.75^{\circ}C$, 2.19%였으며 공기순환팬 사용 시 측점 간 온도차 및 습도차의 평균값은 $0.42^{\circ}C$, 1.27%로 감소하였다. 공기순환팬 설치 온실과 미설치 온실의 누적 에너지소비량은 각각 4,673kWh, 4,009kWh로 공기순환팬 설치 온실에서 약 14.2%의 에너지를 적게 소모하였다. 이러한 결과로 보아 온실 내 공기순환팬 사용은 공기를 지속적으로 교반시켜 주어 온실 전체의 온도 및 습도를 균일하게 만들고, 공기의 온도가 빠르게 변하지 않도록 해주어 난방 장치의 가동 시간과 에너지소비량을 줄일 수 있다.

대청호 발전방류수의 인·탁수 배출 역동성과 육수·수문학적 영향 (Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea)

  • 신재기;황순진
    • 생태와환경
    • /
    • 제50권1호
    • /
    • pp.1-15
    • /
    • 2017
  • 대청호는 금강의 중 하류에 대댐(>15 m 높이) 건설로 만들어진 저수지이며, 방류시스템은 수문-여수로, 수력발전 방수로 및 취수탑을 가지고 있다. 본 연구의 목적은 저수지의 하류 댐에서 발생하는 탁수 감소, 녹조현상 및 빈 영양 상태에 대한 육수학적 의문점을 파악하기 위한 것이었고, 수문 기상학적 요인을 중심으로 비교분석 하였다. 현장조사는 2000년 1월부터 12월까지 댐과 발전방류구 지점에서 1주 간격으로 수행하였다. 강수량은 유입량, 방류량 및 수위변동과 밀접한 관련성을 보였다. 강우패턴은 장마와 태풍호우에 의존적이었고, 유량, 탁도의 증가는 강우 빈도보다 강도에 더욱 중요하게 반응하였다. 저수지의 수층별 수온과 DO 변동은 기상 수문학적 영향이 컸고, 수온성층, 밀도류 및 방류에 기초 한 수위변동이 주요한 원인으로 작용하였다. 수문 및 발전방류는 각각 수체의 유동과 탁수 영양염의 배출을 유도하였다. 특히, 저층수에서 저산소 또는 빈산소일 때, 발전방류는 저질층에서 용출되는 인(P)을 댐 하류 하천으로 유출하는 데 크게 기여하였다. 또한, 연중 지속적으로 가동되는 발전방류수는 저수지의 하류(정수대)를 저영양 상태로 만들 수 있는 주된 요인이었다. 그리고 저수지의 하류에서 발생하는 녹조현상은 수문-여수로 방류 때 상류의 수체가 하류로 이송 및 확산된 결과이었다. 발전방류수는 저수지 생태계의 물리, 화학 및 생물학적 요인에 시공간적 영향을 광역적으로 미칠 수 있는 중요성과 역동성을 포함하고 있었다.