• Title/Summary/Keyword: Boron-steel

Search Result 181, Processing Time 0.033 seconds

Effects of Heat Treatment on the Micro-structures and the Mechanical Properties of 0.002% Boron-added Low Carbon Steel (0.002% 보론첨가 저탄소강의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Lim, Jong-Ho;Kim, Jong-Sik;Park, Byung-Ho;Lee, Jin-Hyeon;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.303-308
    • /
    • 2011
  • The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about $880-890^{\circ}C$ with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a $400-450^{\circ}C$ tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of $350-400^{\circ}C$. In the condition of quenching at $890^{\circ}C$ and tempering at $350^{\circ}C$, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill $350^{\circ}C$ and dropped sharply above $400^{\circ}C$ regardless of the quenching temperature.

Effect of B Contents on Hardness Characteristic of Disk Laser Beam Welded CP Steels (CP강의 디스크레이저 용접부의 경도특성에 미치는 B 함유량의 영향)

  • Park, Tae-Jun;Yu, Jung-Woo;Kang, Jun-Il;Han, Tae-Kyo;Chin, Kwang-Keun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • CP steel was developed to reduce the weight and increase the strength of car body. When it was welded using state-of-the-art disk laser welding, the effected of boron on the microstructure and hardness were investigated. Welding power was fixed at 3.5kW and welding speeds were 4,8 and 12m/min. Full penetration occurred in welding speed of 12m/min and weld bead was almost unchanged with boron contents. But the welding speed increased, the upper and lower bead were narrowed. In a welding speed of more than 8m/min, underfill defects were formed on the bead bottom. The hardness of weld zone was somewhat fluctuation in fusion zone and HAZ showed the highest hardness values. The hardness of each region showed little change with the boron contents, and softening phenomenon occurred in the HAZ near the base metal regardless of the boron contents.

Influence of Mo and Cr Contents on Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Mo 및 Cr 함량의 영향)

  • Hwang, Byoungchul;Suh, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.555-561
    • /
    • 2013
  • The hardenability of low-carbon boron steels with different molybdenum and chromium contents was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy (SIMS), and then discussed in terms of the segregation and precipitation behaviors of boron. The hardenability was quantitatively evaluated by a critical cooling rate obtained from the hardness distribution plotted as a function of cooling rate. It was found that the molybdenum addition was more effective than the chromium addition to increase the hardenability of boron steels, in contrast to boron-free steels. The addition of 0.2 wt.% molybdenum completely suppressed the formation of eutectoid ferrite, even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.5 wt.% chromium did this at cooling rates above $3^{\circ}C/s$. The SIMS analysis results to observe the boron distribution at the austenite grain boundaries confirmed that the addition of 0.2 wt.% molybdenum effectively increased the hardenability of boron steels, as the boron atoms were significantly segregated to the austenite grain boundaries without the precipitation of borocarbide, thus retarding the austenite-to-ferrite transformation compared to the addition of 0.5 wt.% chromium. On the other hand, the synergistic effect of molybdenum and boron on the hardenability of boron steels could be explained from thermodynamic and kinetic perspectives.

Effects of Boron Addition on the Graphitization Behavior in High Carbon Steel (고탄소강의 흑연화거동에 미치는 B첨가의 영향)

  • Woo, K.D.;Park, Y.K.;Kim, K.W.;Jin, Y.C.;Ryu, J.H.;Ra, J.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.2
    • /
    • pp.140-149
    • /
    • 1998
  • The graphitization is affected by the addition of small amount of the elements, such as Si, Al, Ni, B, Cr and Mn etc. Boron is well known as the most effective element for the graphitization of cementite in high carbon steels. But a study on quantitative analysis of B effect on the graphitization is few reported. Therefore the effect of boron addition in Fe-0.65%C-1.0%Si-0.5%Mn steels on the graphitization is investigated quantitatively using hardness tester, optical microscope and scanning electron microscope, neutron induced microscopic radiography. The graphitization in high carbon steels is promoted with 0.003~0.005%B addition. But the graphitization in steels which has no boron takes long holding time at $680{\sim}720^{\circ}C$. The hardness of quenched steel containing 0.003%B is higher than that of 0.005%B added steel due to complete dissolution of fine graphites into the austenite. The 0.003%B added high carbon steel graphitized at $680^{\circ}C$ for 25hr is useful steel for the agricultural implements and automobile parts which needed a good formability and high hardness.

  • PDF

A Study on Reusable Metal Component as Burnable Absorber Through Monte Carlo Depletion Analysis

  • Muth, Boravy;Alrawash, Saed;Park, Chang Je;Kim, Jong Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.481-496
    • /
    • 2020
  • After nuclear power plants are permanently shut down and decommissioned, the remaining irradiated metal components such as stainless steel, carbon steel, and Inconel can be used as neutron absorber. This study investigates the possibility of reusing these metal components as neutron absorber materials, that is burnable poison. The absorption cross section of the irradiated metals did not lose their chemical properties and performance even if they were irradiated over 40-50 years in the NPPs. To examine the absorption capability of the waste metals, the lattice calculations of WH 17×17 fuel assembly were analyzed. From the results, Inconel-718 significantly hold-down fuel assembly excess reactivity compared to stainless steel 304 and carbon steel because Inconel-718 contains a small amount of boron nuclide. From the results, a 20wt% impurity of boron in irradiated Inconel-718 enhances the excess reactivity suppression. The application of irradiated Inconel-718 as a burnable absorber for SMR core was investigated. The irradiated Inconel-718 impurity with 20wt% of boron content can maintain and suppress the whole core reactivity. We emphasize that the irradiated metal components can be used as burnable absorber materials to control the reactivity of commercial reactor power and small modular reactors.

Oxide Layer Analysis of Uncoated Boron Steel Sheet for Hot Stamping According to the Atmosphere Oxygen Content (비도금 핫스탬핑용 보론강판의 분위기 산소량에 따른 산화층 분석)

  • J. H. Lee;T. H. Choi;J. H. Song;G. H. Bae
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • As the supply of eco-friendly vehicles increases, the application rate of hot stamping components is rising to reduce vehicle weight and improve safety. Although Al-Si coated steel sheets are commonly used in hot stamping processes, their manufacturing costs are elevated due to process patents and royalties. Various hot stamping studies have been conducted to reduce these production costs. In this study, we derived a process control method for suppressing the oxide layer of hot stamping parts using uncoated boron steel sheets. Firstly, hat-shaped parts were hot stamped under atmospheric conditions to analyze the tendency of oxide layer formation by location. Then, the Gleeble system was used to observe oxide layer formation based on oxygen content under various atmospheric conditions. Finally, the oxide layer thickness was quantitatively measured using SEM images.

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (II) - Laser Weldability of Hot Stamping Steel with Ultra-High Strength - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (II) - 초고강도 핫스탬핑강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Park, In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1373-1377
    • /
    • 2014
  • Hot-stamping is a method of obtaining ultrahigh-strength steel by simultaneously forming and cooling boron steel in a press die after it has been heated at $900^{\circ}C$ or above. After heat treatment, boron steel has a strength of 1500 MPa or more. This material ensures a high level of quality because it overcomes the spring-back phenomenon, which is a problem associated with high-strength steel materials, and the degree of dimensional precision is improved by 90 or more because of the good formability compared with existing types of steel. In this study, the welding characteristics were identified through the butt and lap welding of hot-stamped steel using a disk laser. Full penetration was obtained at a faster speed with butt welding compared to lap welding, and a white band was observed in every specimen.

Determination of Boron Steel by Isotope-Dilution Inductively Coupled Plasma Mass Spectrometry after Matrix Separation

  • Park, Chang-J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1541-1544
    • /
    • 2002
  • The concentration of B in steels is important due to its influence on mechanical properties of steel such as hardenability, hot workability, and creep resistance. An analytical method has been developed to determine B in steel samples by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). National Institute of Standard and Technology Standard Reference Material (NIST SRM) 348a was analyzed to validate the analytical method. The steel sample was digested in a centrifuge bottle with addition of aqua regia and $^{10}B$ spike isotope. Sample pH was then adjusted to higher than 10 to precipitate most matrix elements such as Fe, Cr, and Ni. After centrifugation, the supernatant solution was passed through a cation exchange column to enhance the matrix separation efficiency. B recovery efficiency was about 37%, while matrix removal efficiency was higher than 99.9% for major matrix elements. The isotope dilution method was used for quantification and the determined B concentration was in good agreement with the certified value.