• Title/Summary/Keyword: Boron-steel

Search Result 181, Processing Time 0.024 seconds

Effect of Quenching Temperature Change on Hardenability of AISI 51B20 Boron Steel (AISI 51B20 보론첨가강의 경화능에 미치는 오스테나이트화 온도의 영향)

  • Kim, Heon-Joo;Park, Moo-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.315-322
    • /
    • 2010
  • Effect of hardenability, grain size and microstructural change according to the change of austenitizing temperature was analyzed in Jominy hardenability test of AISI 51B20 steel. Grain growth was small, 7 ${\mu}m$ and 12 ${\mu}m$ austenite grain sizes at austenitizing temperature of $900^{\circ}C$ and $1000^{\circ}C$, respectively, while rapid grain growth was observed up to 30 ${\mu}m$ austenite grain size at austenitizing temperature of $1100^{\circ}C$. As austenitizing temperature increased from $900^{\circ}C$ to $1100^{\circ}C$, hardenability in the region within 15 mm from end-quenched surface decreased due to the grains growth of bainite and martensite mixture, on the other hand the hardenability in the region exceeding 15 mm from end-quenched surface increased. Increased hardenability was attributed to different microstructures; pearlite, fine pearlite and bainite, and bainite and martensite structures at austenitizing temperature of $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$, respectively.

Brazing Property of SUS304 Stainless Steel and BNi-2 Filler Metal with Vacuum Brazing : Fundamental Study on Brazeability with Ni-Based Filler Metal(I) (진공브레이징에 의한 SUS304 스테인리스강과 BNi-2계 삽입금속의 접합특성 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(I))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.142-146
    • /
    • 2007
  • Vacuum brazing method has been coming to an important process as one of the new fabricating techniques of metals and alloys. In this study, a vacuum brazing of SUS304 stainless steel with BNi-2 filler metal was carried out in $1{\times}10^{4}$ Torr of vacuum atmosphere. The formation of brittle intermetallic compounds in brazed joints between SUS304 stainless steel and BNi-2 filler metal is a major concern, since they considerably degrade the mechanical properties of joints. To obtain enough stable joining strength, it is necessary to understand the unique properties of brazing process with Ni-based filler metals containing boron. So, in this research we investigated the performance of SUS304/BNi-2 brazed system and the brazed joint properties were evaluated at room temperature by using tensile test. Metallurgical and fractographic analysis were used to characterize the microstructure, the mechanisms of brazing, and joint failure modes.

Effects of V Addition on Tensile and Impact Properties in Low Carbon 1.1Mn Steels (저탄소 1.1 Mn 강의 인장 및 충격 성질에 미치는 V첨가의 영향)

  • Yang, H.R.;Cho, K.S.;Choi, J.H.;Sim, H.S.;Lee, K.B.;Kwon, H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.281-286
    • /
    • 2008
  • In the 1.1 Mn steel containing boron, effects of the 0.1 V addition and processing condition were studied. In the $550^{\circ}C$ interrupted cooling where the main structure is (ferrite + pearlite), the impact toughness decreased as the tensile strength increased by the 0.1 V addition. The $800^{\circ}C$ rolling including two step rolling of $800-770^{\circ}C$, exhibited better strength-toughness balance, as compared to the $770^{\circ}C$ rolling. This seems to be kind of conditioning effect at higher temperature, e.g., more uniform deformation effect. In the accelerated cooling after the $750^{\circ}C$ rolling in a dual phase range, the impact toughness was enhanced, despite a large increase in tensile strength. This is believed to be related to the change of main structure from (ferrite + pearlite) to (ferrite + bainite).

Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1 (고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.196-203
    • /
    • 1982
  • To transport the spent fuel assemblies of Korea Nuclear Unit 1, which is a Westinghouse type two loop pressurized water reactor, it has been found that steel is the most appropriate material for the design of a shipping cask in comparison with lead and depleted uranium. The proposed shipping cask will transport nine fuel assemblies at the same time and is well within the weight limit of transportation by unrestricted rail car. The cask requires 33cm thick steel shield and 27cm thick water region to satisfy the 3 feet apart dose rate limit set forth in 10 CFR 71, and 1.27cm thick steel boron fuel basket to hold the fuel elements inside the cask and control the effective multiplication factor. As a safety analysis, the fuel cladding and centerline temperatures were calculated under the accident condition of complete loss of water coolant, and it was found that the temperature was much lower than the limit of the melting point. k$_{eff}$ was calculated with fresh fuel assemblies, which was found to be well lower than 0.95. For shielding computation, the multipurpose Monte Carlo code MORSE-CG and one dimensional discrete ordinates transport code ANISN were used, and the Monte Carlo codes KENO and MORSE-CG were used for criticality calculation. The radiation source terms were calculated using ORIGEN-79.9.

  • PDF

A Study on Effective Relations between China's Cancellation of the Export Rebate of VAT tax and Chinese Steel Export to Korea. (중국의 수출 증치세 환급 취소가 중국산 철강재의 대한국 수출에 미치는 영향)

  • Lee, Seoung Taek
    • International Commerce and Information Review
    • /
    • v.19 no.3
    • /
    • pp.83-105
    • /
    • 2017
  • I tried to analyze export relation of influence in Chinese H beam(common steel), Hot Rolled Steel(common steel), Plate(common steel) which could be influenced immediately by China's cancellation of the export rebate of value added tax in 2010 through the statistic methods such as cointegration, Granger causality, impulse response and variance decomposition. In the first period they mutually influenced each other in export to Korea but in the second period, this relation of influence was lessoned. Due to production expansion of Hot Rolled Steel(common steel), Plate(common steel) in Korea, the change of import trend, the market change of steel users' industries and China's expedient export of boron steel to Korea, mutual influence among these products was greatly declined. Ever since Hyundai Steel's production expansion involving blast furnace facilities, there is need for the industry to concentrate on developing new markets for its facilities' output in Korea. Therefore, Korea's steel industry desperately needs strength of de-jure standards such as unique quality standards and related certifications, efficient distribution management, as well as export promotion strategy through its global trading network to effectively address its structural supply-demand imbalances.

  • PDF

Prediction of Hardness of Hot Stamped Parts Using the Quench Factor Analysis (핫스템핑 공정에서 Quench Factor Analysis를 이용한 제품의 경도 예측)

  • Choi, J.Y.;Ko, D.H.;Seo, P.K.;Cha, S.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.357-362
    • /
    • 2014
  • The purpose of the current study is to predict the hardness distribution in steel products after hot stamping using a quench factor analysis(QFA) coupled with FE-simulations. QFA is a method to predict properties such as hardness and tensile strength based on time-temperature-property(TTP) curves and can determine properties based on the temperature histories. The constants($K_1{\sim}K_5$) of QFA were determined using hardness data obtained after various cooling rates. In the current study, a rear side member was selected for evaluation and FE-simulations were performed to obtain the temperature histories during hot stamping. The predicted temperature data were imported into the QFA to calculate the hardness distribution of the hot stamped parts. A hot stamping experiment of the rear side member was conducted to verify the predicted hardness. The simulation results show good agreement with the experimental measurements.

Influence of Brazing Temperature on Strength and Structure of SUS304 Stainless Steel Brazed System with BNi-2 Filler Metal : Fundamental Study on Brazeability with Ni-Based Filler Metal(II) (BNi-2계 삽입금속에 의한 SUS304 스테인리스강 접합체의 강도와 조직에 미치는 브레이징 온도의 영향 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(II))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.179-183
    • /
    • 2007
  • A plate heat exchanger (PHE) normally uses vacuum brazing technology for connecting plates and fins. However, the reliability of high temperature brazing, especially with nickel-based filler metals containing boron the formation of brittle intermetallic compounds (IMCs) in brazed joints is of major concern. since they considerably degrade the mechanical properties. This research was examined the vacuum brazing of commercially SUS304 stainless steel with BNi-2 (Ni-Cr-B-Si) filler metal, and discussed to determine the influence of brazing temperatures on the microstructure and mechanical strength of brazed joints. In the metallographic analysis it is observed that considerable large area of Cr-B intermetallic compound phases at the brazing layer and the brazing tensile strength is related to removal of this brittle phase greatly. The mechanical properties of brazing layer could be stabilized through increasing the brazing temperature over $100^{\circ}C$ more than melting temperature of filler metals, and diffusing enough the brittle intermetallic compound formed in the brazing layer to the base metal.

Characterization of Elliptical Dimple Fabricated with Dual Frequency Vibration Assisted Machining (이중 주파수 지원 절삭으로 가공된 타원형 딤플의 특성)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Surface texturing is a promising route to reduce the friction forces between two surfaces in sliding contact. To this end, the fabrication of micro dimples is one of the most widely used surface texturing methods. According to published results, textured surfaces with elliptical micro dimples offer the best friction performance. Therefore, we fabricated elliptical micro dimples on carbon steel (SM45C) by using dual frequency vibration assisted machining. High and low frequencies of 16.3 kHz and 230 Hz were applied to the 3D resonant elliptical vibrator. The 3D resonant elliptical vibrator with a triangular cubic boron nitride insert was assembled on a computer numerically controlled turning lathe. Oval micro dimples of various profiles were manufactured on carbon steel. In terms of the profile of the elliptical micro dimples, the experimental results indicated that the average micro dimple width and depth were 112 ㎛ and 7.7 ㎛. These dimensions are closely related to the cutting conditions and can be easily controlled.

Determining PGAA collimator plug design using Monte Carlo simulation

  • Jalil, A.;Chetaine, A.;Amsil, H.;Embarch, K.;Benchrif, A.;Laraki, K.;Marah, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.942-948
    • /
    • 2021
  • The aim of this work is to help inform the decision for choosing a convenient material for the PGAA (Prompt Gamma Activation Analysis) collimator plug to be installed at the tangential channel of the Moroccan Triga Mark II Research Reactor. Two families of materials are usually used for collimator construction: a mixture of high-density polyethylene (HDPE) with boron, which is commonly used to moderate and absorb neutrons, and heavy materials, either for gamma absorption or for fast neutron absorption. An investigation of two different collimator designs was performed using N-Particle Monte Carlo MCNP6.2 code with the ENDF/B-VII.1 and MCLIP84 libraries. For each design, carbon steel and lead materials were used separately as collimator heavy materials. The performed study focused on both the impact on neutron beam quality and the neutron-gamma background at the exit of the collimator beam tube. An analysis and assessment of the principal findings is presented in this paper, as well as recommendations.

FE Analysis of Hot Press Forming Process considering the Phase Transformation (상변태를 고려한 핫프레스포밍 공정의 유한요소해석)

  • Kang, Gyeong-Pil;Lee, Kyung-Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.226-229
    • /
    • 2008
  • Hot press forming is an advanced forming technology fur manufacturing of complex and crash-resistant automotive parts using ultra high strength steels. The 3-dimensional FE analysis of hot press forming process, in which process the deformation, heat transfer and phase transformation behavior are fully coupled, is carried out. The vast amount of material properties for the FE analysis is obtained from material properties calculation software which is based on thermodynamic calculations. The overall methodology for the FE analysis of HPF process and the analysis results are discussed here.

  • PDF