• Title/Summary/Keyword: Boron segregation

Search Result 26, Processing Time 0.025 seconds

A STUDY ON THE BEHAVIOR OF BORON DISTRIBUTION IN LOW CARBON STEEL BY PARTICLE TRACKING AUTORADIOGRAPHY

  • Mun, Dong-Jun;Shin, Eun-Joo;Koo, Yang-Mo
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The behavior of the non-equilibrium grain boundary segregation of boron in low carbon steel was studied through a particle tracking autoradiography. The behavior of the non-equilibrium grain boundary segregation of boron during continuous cooling was compared with the isothermal kinetics of the non-equilibrium grain boundary segregation of boron at the holding temperature using an effective time method. On the basis of the experiments, the cooling rate dependence of the non-equilibrium segregation of boron was explained using the time dependence of the non-equilibrium segregation of boron in low carbon steel. The experimental observations for the cooling rate dependence of the grain boundary segregation of boron are in good agreement with the time dependence of the grain boundary segregation of boron. The mechanisms of the non-equilibrium segregation of boron during cooling in low carbon steel are also discussed.

Effect of Austenitizing Temperature on the Hardenability and Tensile Properties of Boron Steels (오스테나이트화 온도에 따른 보론강의 경화능과 인장 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.497-502
    • /
    • 2015
  • The hardenability of boron steel specimens with different molybdenum and chromium contents was investigated using dilatometry and microstructural observations, and then was quantitatively measured at a critical cooling rate corresponding to 90 % martensite hardness obtained from a hardness distribution plotted as a function of cooling rate. Based on the results, the effect of an austenitizing temperature on the hardenability and tensile properties was discussed in terms of segregation and precipitation behavior of boron atoms at austenite grain boundaries. The molybdenum addition completely suppressed the formation of pro-eutectoid ferrite even at the slowest cooling rate of $0.2^{\circ}C/s$, while the chromium addition did at the cooling rates above $3^{\circ}C/s$. On the other hand, the hardenability of the molybdenum-added boron steel specimens decreased with an increasing austenitizing temperature. This is associated with the preferred precipitation of boron atoms since a considerable number of boron atoms could be concentrated along austenite grain boundaries by a non-equilibrium segregation mechanism. The secondary ion mass spectroscopy results showed that boron atoms were mostly segregated at austenite grain boundaries without noticeable precipitation at higher austenitization temperatures, while they formed as precipitates at lower austenitization temperatures, particularly in the molybdenum-added boron steel specimens.

Effect of applied magnetic fields on Czochralski single crystal growth (Part II) (Czochralski 단결성 성장특성제어를 위한 자장형태에 관한 연구 (Part 2))

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The characteristics of flows, temperatures, concentrations of the boron are numerically studied when uniform axial magnetic fields are applied in the Czechralski crucible. The to governing factors to the flow regimes are buoyancy, thermocapillarity, centrifugal forces, magnetic forces, diffusion coefficient and segregation coefficient of the boron. Since the concentration of the boron is so low that buoyancy effects are negligible, it cannot affect the flow and temperature fields. From the fact that the flow fields are rotationally symmetric, two velocity components in the meridional plane and the circumferential velocity are calculated together with the temperature in the steady state. Based on the known velocity and temperature distributions the unsteady concentration distributions of the boron are calculated. As the strength of the magnetic is increased, the flow velocities are decreased. Circumferential velocities are large near the crucible side-wall and in the region below the rotating crystal. Steep temperatures gradient near the edge of the rotating crystal causes the Marangoni convection. It has been found out that the convection characteristics affects the unsteady transport phenomena of the boron.

  • PDF

Effect of Hot-Stamping on Mechanical Properties and Microstructures of CO2 Laser Welded Boron Steel coated with Al-Si layer (Al-Si 용융 도금된 보론강 CO2 레이저 용접부의 미세조직과 기계적 성질에 미치는 핫스탬핑 처리의 영향)

  • Oh, Myeonghwan;Kong, Jongpan;Shin, Hyeonjeong;Kwon, Minsuck;Jung, Byunghun;Kang, Chungyun
    • Laser Solutions
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • In this study, Al-Si coated boron steel(1.2 mm) were laser welded by $CO_2$ laser and hot-stamping was applied to the laser joints. Tensile properties and microstructures of the joints were investigated before and after hot-stamping. Tensile and yield strengths of the as welded specimen similar with base metal and fracture occurred base metal of boron steel. Although, in case of heat treated specimen, fracture occurred fusion zone that Al segregated zone near the bond line. These could be explained by the existence of ferrite, in the Al segregated zone near the bond line and base metal of boron steel. Before hot-stamping, hardness of base metal is lower than fusion zone and heat affected zone in spite of exist Al segregation zone($Fe_3$(Al,Si)). So fracture occurred base metal. Although, after hot-stamping, microstructure of base metal and welds zone transformed to martensite and bainite except in Al segregation zone near the bond line that $Fe_3$(Al,Si) transformed to a-ferrite. So fracture occurred Al segregation zone near the bond line.

  • PDF

The effect of boron on the corrosion resistance of 304 stainless steels (304 스테인리스강의 내식성에 미치는 붕소의 영향)

  • 안병국;원태연;이윤용;윤정모;최병길;황선효
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.89-95
    • /
    • 1995
  • Effect of boron on corrosion resistance of Type 304 stainless steel has been studied. Boron tends to segregate at the grain boundaries during cooling after solution treatment, and so boron treated steel usually exhibits a ditch structure under the 10% oxalic acid test. However, it was found that the addition of 25 ppm boron in Type 304 steel has no effect on the general and pitting corrosion resistance while it has a little effect on the intergranular corrosion resistance.

  • PDF

Influence of Mo and Cr Contents on Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Mo 및 Cr 함량의 영향)

  • Hwang, Byoungchul;Suh, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.555-561
    • /
    • 2013
  • The hardenability of low-carbon boron steels with different molybdenum and chromium contents was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy (SIMS), and then discussed in terms of the segregation and precipitation behaviors of boron. The hardenability was quantitatively evaluated by a critical cooling rate obtained from the hardness distribution plotted as a function of cooling rate. It was found that the molybdenum addition was more effective than the chromium addition to increase the hardenability of boron steels, in contrast to boron-free steels. The addition of 0.2 wt.% molybdenum completely suppressed the formation of eutectoid ferrite, even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.5 wt.% chromium did this at cooling rates above $3^{\circ}C/s$. The SIMS analysis results to observe the boron distribution at the austenite grain boundaries confirmed that the addition of 0.2 wt.% molybdenum effectively increased the hardenability of boron steels, as the boron atoms were significantly segregated to the austenite grain boundaries without the precipitation of borocarbide, thus retarding the austenite-to-ferrite transformation compared to the addition of 0.5 wt.% chromium. On the other hand, the synergistic effect of molybdenum and boron on the hardenability of boron steels could be explained from thermodynamic and kinetic perspectives.

Sintering Stainless Steels with Boron Addition in Nitrogen Base Atmosphere

  • Abenojar, J.;Esteban, D.;Martinez, M.A.;Velasco, F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.574-575
    • /
    • 2006
  • Due to the increasing use that the stainless steel is getting recently in the nuclear industry, this document proposes the study of the stainless steel 316L with boron addition. With the final product, the properties of the stainless steel 316L (good mechanical properties and high corrosion resistance) with the boron neutron absorption properties are claimed to unify. The P/M technologies allow adding higher boron quantities than with the solidification conventional technologies, where segregation is produced.

  • PDF

Estimation of the impurity segregation in the multi-crystalline silicon ingot grown with UMG (Upgraded Metallurgical Grade) silicon (UMG(Upgraded Metallurgical Grade) 규소 이용한 다결정 잉곳의 불순물 편석 예측)

  • Jeong, Kwang-Pil;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Production of the silicon feedstock for the semiconductor industry cannot meet the requirement for the solar cell industry because the production volume is too small and production cost is too high. This situation stimulates the solar cell industry to try the lower grade silicon feedstock like UMG (Upgraded Metallurgical Grade) silicon of 5$\sim$6 N in purity. However, this material contains around 1 ppma of dopant atoms like boron or phosphorous. Calculation of the composition profile of these impurities using segregation coefficient during crystal growth makes us expect the change of the type from p to n : boron rich area in the early solidified part and phosphorous rich area in the later solidified part of the silicon ingot. It was expected that the change of the growth speed during the silicon crystal growth is effective in controlling the amount of the metal impurities but not effective in reducing the amount of dopants.

Effect of W Addition on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 W 첨가의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.488-494
    • /
    • 2014
  • The effect of tungsten (W) addition on the hardenability of low-carbon boron steels was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy. The hardenability was discussed with respect to transformation behaviour aspects depending on the segregation and precipitation of boron at austenite grain boundaries. A critical cooling rate producing a hardness corresponding to 90 % martensite structure was measured from a hardness distribution plot, and was used as a criterion to estimate hardenability at faster cooling rates. In the low-carbon boron steel, the addition of 0.50 wt.% W was comparable to that of 0.20 wt.% molybdenum in terms of critical cooling rate, indicating hardenability at faster cooling rates. However, the addition of 0.50 wt.% W was not more effective than the addition of .0.20 wt.% molybdenum at slower cooling rates. The addition of 0.20 wt.% molybdenum completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.50 wt.% W did not, even at the cooling rate of $1.0^{\circ}C/s$. Therefore, it was found that the effect of alloying elements on the hardenability of low-carbon boron steels can be differently evaluated according to cooling rate.

Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.