• Title/Summary/Keyword: Boron potassium nitrate($BKNO_3$)

Search Result 4, Processing Time 0.017 seconds

Thermal Decomposition Behavior of Boron-Potassium Nitrate (BKNO3) by TGA (열중량분석법에 의한 Boron-Potassium Nitrate(BKNO3)의 열분해 특성 연구)

  • Go, Cheongah;Kim, Junhyung;Park, Youngchul;Moon, Youngtaek;Seo, Taeseok;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.104-110
    • /
    • 2019
  • The thermal decomposition characteristics of boron-potassium nitrate ($BKNO_3$) were investigated by non-isothermal thermal gravimetric analysis (TGA). Two steps of mass loss were observed in the temperature range between room temperature and $600^{\circ}C$. Kinetic parameters of the thermal decompositions were evaluated from the measured TGA curves using the AKTS Thermokinetics Software. For the first step of mass loss ($220-360^{\circ}C$) corresponding to the thermal decomposition process of the binder (Laminac/Lupersol), the activation energy is in the range of approximately 120-270 kJ/mol when evaluated by Friedman's iso-conversional method, while the value of activation energy varies in the range of approximately 150-400 kJ/mol during the second step process ($360-550^{\circ}C$).

The Manufacturing Process and Characteristic Analysis of BKNO3 Metal-Explosive for PMD (PMD용 BKNO3 금속화약의 제조공정 및 특성분석)

  • Shim, Jungseob;Kim, Sangbaek;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • This study investigated the manufacturing process and characteristics of $BKNO_3$ (Boron Potassium Nitrate) as a pyrotechnic propellant that is commonly used in the aerospace, defense, and automobile industries. The solid mixture was composed of oxidizing agent, fuel, and binder. Evaporation process was used to uniformly mix the raw materials. The optimal ratio of composition was designed through the CEA program analysis of the material characteristics and thermal responses. Further the size, shape, sensitivity, and calorimetry characteristics were studied.

The Characteristics Analysis and Manufacture of Explosive BKNO3 on PMD (PMD용 화약 BKNO3 제조 및 특성분석)

  • Shim, Jungseob;Kim, Sangbaek;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.433-439
    • /
    • 2017
  • This research investigates the manufacturing process and characteristics analysis of $BKNO_3$ (Boron Potassium Nitrate) as pyrotechnic are commonly found in the aerospace, defense, and automotive industries. A solid pyrotechnic mixture is composed of an oxidizing agent, fuel, and binder. Precipitation process was used to uniformly mix the raw material. Through the analysis of the material characteristics and thermal response is designed optimum ratio by NASA CEA program. It was compared by performing the evaluation of these size/shape/sensitivity/calorimetry characteristics.

  • PDF

Confirmation of Long-term stability on THPP using thermodynamic and kinetic analysis (열역학적 및 속도론적 분석을 통한 THPP의 노화 안정성 확인)

  • Lee, Junwoo;Kim, Sangwon;Choi, Kyoungwon;Lee, Seung Bok;Ryu, Byungtae;Park, Taiho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.513-516
    • /
    • 2017
  • When stored for long periods in a powder-based device (PMD), the explosive power in the device is aged and the explosive power is changed. Thus, The gunpowder used in the PMD must be chemically and physically stable for both internal and external factors. Since $BKNO_3$ and THPP are used as representative gunpowder, thermodynamic and kinetic analyzes were performed based on these gunpowders. Differential scanning calorimeter (DSC) was used to analyze the calorific value and reaction rate. As a result, there was no significant change in caloric value and reaction rate in THPP. In addition, XPS and TEM-EDS analyzes were performed to confirm the formation of oxide films directly related to aging, and no oxide films were observed as a result of thermal analysis. In addition, XPS and TEM-EDS analyzes were performed to confirm the formation of oxide films directly related to aging. As a results, no oxide films were observed. It can be concluded that THPP is the most famous gunpowder in terms of long-term stability.

  • PDF