• Title/Summary/Keyword: Boring machine

Search Result 168, Processing Time 0.025 seconds

Improvement on the estimation of workable-quantity per unit time for boring machine (기초공사 천공기계 시간당작업량 산정 개선방안)

  • Ahn, Bang-Ryul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.138-139
    • /
    • 2015
  • Human productivity of Boring Machine for stack is provided but not its hourly workable quantity(Q-value) in the Equipment ownership cost and expenses section of the Poom-Same that is used for construction cost estimation of public sectors in Korea, which leads to less realistic and subjective estimation for the works. The optimized Q-value of the machine is proposed as a result of thorough investigation into many of its operations.

  • PDF

Study on the Workability of Raise Boring Machine in Korea (국내 Raise Boring Machine의 굴착능력에 관한 연구)

  • 이석원;조만섭;배규진
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.196-206
    • /
    • 2003
  • In order to investigate the workability of Raise Boring Machine(RBM) such as utilization, penetration rate and advance rate, a vertical shaft of 98 m in length and 3.05 m in diameter was constructed in the layer of conglomerate by using the RBM in this study. In addition, field data from tow different construction sites including water-pump power plant tunnel, roadway tunnel and mining tunnel by RBM were collected and analyzed. The results show that the average weekly bored length is 19.3 m and its average utilization is between 54.3 % and 75.1 % very higher than that of the TBM(Tunnel Boring Machine). It also turns out that the bit force increases linearly with respect to the increase of the RPM(revolution per minute) of RBM. However, the net penetration rate decreases with the increase of bit force, RPM of RBM and depth of shaft. The findings of this study can be used to provide the useful information for the design of shaft and the selection of RBM.

Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine (터널 굴착기 유압시스템용 유량 제어 블록 개발)

  • Lee, Jae-Dong;Lim, Sang-Jin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

Modelling for TBM Performance Prediction (TBM 굴진성능 예측을 위한 모델링)

  • 이석원;최순욱
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.413-420
    • /
    • 2003
  • Modelling for performance prediction of mechanical excavation is discussed in this paper. Two of the most successful performance prediction models, namely theoretical based CSM model and empirical based NTH model, are discussed and compared. The basic principles of rock cutting with disc cutters, especially Constant Cross Section cutters, are discussed and a theoretical model developed is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting geometry. General modelling logic for the performance prediction of mechanical excavation is introduced. CSM computer model developed and currently used at the Earth Mechanics Institute(EMI) of the Colorado School of Mines is discussed. Example of input and output of this model is illustrated for the typical operation by Tunnel Boring Machine(TBM).

Raise Boring Machines (수직굴착장비)

  • 이강문
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.49-53
    • /
    • 2002
  • 향수직굴착용장비로는 승갱굴착기(Raise Boring Machine)과 레이스크라임버(Raise Climber)로 나눌 수 있다. 이장에서는 수직굴착용장비가 다수 있으나 일부장비를 간략하게 소개하며, 추후 공법에 대한 설명할 기회가 주어진다면 좀더 다양한 장비 및 공법에 대해 자세히 기술하도록 하겠다.

  • PDF

A Study On Heat Transfer and Flow Characteristics for Boring in Sewer by Rotating Cutter Tool (회전노즐장비 작동시 하수관내의 열전달 및 유동현상에 관한 연구)

  • Park Young-Ki;Lee Jang-Choon;Lee Dong-Joo
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.95-100
    • /
    • 2006
  • Heat transfer and flow characteristics in a pipe in which the rotating cutting tool for boring a underground pipe without digging were considered in this study. The amount of heat generation due to the friction between the rotating cutter and pipe wall, mixing (low of air and water injected to cool down are the two important factors to design the boring machine Computational fluid dynamics analysis using the Eulerian mixture model and the standard $\kappa-\varepsilon$ turbulence model was used to analyze the complex phenomena in a pipe during the process. Results show that pipe wall temperature decreased with increasing the cooling water inlet velocity. it is also shown that pipe wail temperature was lowered when the cutter rotation speed was increased until 600 rpm. There was no further cooling effect over 600 rpm.

A Study on Practical Problem Solving for Speed Ripple Rejection in TBM with Regenerative Startup (TBM 회생기동법에서의 속도리플 제거를 위한 실제적 문제 해결에 관한 연구)

  • Kim, TaeKue;Seo, JeongWon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.35-42
    • /
    • 2019
  • In this paper, we analyze the practical problems of the regenerative start method proposed to improve the starting characteristics of the TBM(Tunnel boring machine)system and propose a solution. In order to solve the speed ripple problem in the previous research results, we first analyze the problems occurring in the system and propose a method to compensate for them. By applying the improved method to the actual system, we compared the results with the conventional system and verified the effect of the proposed method.

A Study on Starting Characteristic and Improvement for High Power Motor with Tunnel Boring Machine (TBM용 대용량 전동기의 기동 특성 및 개선 관한 연구)

  • Kim, Tae-Kue;An, Joon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Tunnel Boring Machine's Technology has depends mostly on imports, currently domestic technology development was proceeding. There are many technologies in this field, above all, the large-capacity motor drive technology required for excavation is one of the core technologies. In particular, when several large motors are simultaneously starting, there are many problems due to a large starting current at that time, and it is difficult to design and operate a power receiving facility. In this paper, A method of reducing the starting current by using the regenerative power generated by the deceleration of the motor has been studied. To verify this proposal, we designed the induction motor controller using CAE based power simulation tool and verified the results of the proposed method by applying the reduced model. As a result, it is possible to reduce the maximum starting current and shorten the start-up time. Moreover, even if several motors are connected to one bank, it is proved that the method can be efficiently operated by using the sequential braking / starting sequence. In the case of a power system in which a large capacity electric motor such as a tunnel excavation system is driven, the results of this study are expected to be a stable and effective method for solving the start-up current problem and designing the power receiving facility.

A Study on the Change in Hole Precision with Slenderness Ratio of Boring Cutter (보링커터의 세장비에 따른 구멍 정밀도 변화에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.7-12
    • /
    • 2017
  • It is assumed that the buckling and cutting conditions depending on the slenderness ratio will affect the machining quality of the rotary boring tool mounted on a milling machine. In this study, the boring cutter was designed and fabricated to precisely create the Ø30 hole. Through the performance evaluation, the accuracy of the hole according to the slenderness ratio and cutting conditions was analyzed, and the following conclusions were obtained. The higher the RPM, the smaller the change in the working diameter, and the smaller the hole. Next, the smaller the slenderness ratio, the smaller the change in straightness due to the change in cutting conditions. Finally, the slenderness ratio also affects the tendency for changes in the concentricity. The larger the slenderness ratio, the more sensitive the concentricity to changes in cutting conditions.