• Title/Summary/Keyword: Boring characteristics

Search Result 112, Processing Time 0.027 seconds

A Study on the Dynamic Characteristics of the Composite Boring Bar (복합재료 보링바의 동적 특성에 관한 연구)

  • 황희윤;김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.206-210
    • /
    • 2003
  • Machining of deep holes with conventional boring bars frequently induce chatter vibration because of their low dynamic stiffness which is defined as the product of static stiffness and damping of conventional boring bar materials. In addition, the specific stiffness ($E/{\rho}g$) of boring bars is more important than the static stiffness to increase the fundamental natural frequency of boring bars in high speed machining. Therefore, boring bar materials should have high static stiffness and high damping as well as high specific stiffness. The best way to meet requirements is to employ fiber reinforced composite materials for high speed boring bars because composite materials have high static stiffness, high damping and high specific stiffness compared to conventional boring bar materials. In this study, the dynamic characteristics of carbon fiber epoxy composite boring bars were investigated. From the metal cutting test, it was found that the chatter was not initiated up to the ratio of length to diameter of 10.7 at the rotating speed of 2,500 rpm.

  • PDF

A Study on the Dynamic Response Characteristics of Lathe Boring Bar (선반용 보링바의 동적응답특성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.62-69
    • /
    • 2010
  • Internal lathe machining with a boring bar is weak with respect to vibration because the bar is long and slender. Therefore, it is important to study the dynamic characteristics of a boring bar. The purpose of this study was to identify the effects of overhang and cutting conditions on the dynamic response characteristics of a boring bar. For an efficient experiment, an $L_g(3^3)$ orthogonal array was applied and the results were quantitatively analyzed by ANOVA. Overhang, feed per revolution, and depth of cut were selected as independent variables. Meanwhile, dynamic stiffness, damping ratio, damping coefficient, and acceleration were chosen as dependent variables. The vibration signal was obtained from an accelerometer attached to the boring bar, followed by visualization by a signal analyzer. The effect of overhang was found to have a significant effect on the dynamic stiffness, damping ratio, and damping coefficient, but the other variables did not. As the length of the overhang increased, the dynamic stiffness decreased and the damping ratio increased. In addition, the damping coefficient increased until the length of the overhang was 4D (where D is the shank diameter), after which it remained constant. The acceleration decreased until the overhang length was 4D, and then increased sharply when the overhang was increased further. From these results, the behavioral trend of the damping characteristics changed when its overhang length was 4D. Consequently, there is a critical point that the dynamic characteristics of boring bar change.

연속계 해석에 의한 보오링바의 비선형 동적 거동

  • 박수길;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.137-141
    • /
    • 1993
  • In the case of a boring bar, the vibration amplitude is generallylarge due to its high slenderness. The boring bat is then modelled as a cantilever with dynamic force acting at the free end and a generalized model of nonlinear continous system is obtained. The Analysis of model is conducted for the specific case with a zero side cutting edge angle. The dynamic behaviour is investigated for machining processes in which the the overlap factor of regenerative effect is considered. The vibration characteristics of boring bar depth of cut rather than feed rate in given slenderness.

A Study On Heat Transfer and Flow Characteristics for Boring in Sewer by Rotating Cutter Tool (회전노즐장비 작동시 하수관내의 열전달 및 유동현상에 관한 연구)

  • Park Young-Ki;Lee Jang-Choon;Lee Dong-Joo
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.95-100
    • /
    • 2006
  • Heat transfer and flow characteristics in a pipe in which the rotating cutting tool for boring a underground pipe without digging were considered in this study. The amount of heat generation due to the friction between the rotating cutter and pipe wall, mixing (low of air and water injected to cool down are the two important factors to design the boring machine Computational fluid dynamics analysis using the Eulerian mixture model and the standard $\kappa-\varepsilon$ turbulence model was used to analyze the complex phenomena in a pipe during the process. Results show that pipe wall temperature decreased with increasing the cooling water inlet velocity. it is also shown that pipe wail temperature was lowered when the cutter rotation speed was increased until 600 rpm. There was no further cooling effect over 600 rpm.

Dynamic Characteristics Analysis and Chatter Prediction in High Speed CNC Lathe (고속 CNC 선반의 동특성 해석과 채터 예측)

  • Lee, Woo-Seok;Lee, Sin-Young;Lee, Jang-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.151-157
    • /
    • 1999
  • Vibrations in machine tools make many problems in precision, production efficiency, and machine performance. The relative vibration between a workpiece and a tool is very complicated due to many sources. In this study, the dynamic characteristics of a newly developed CNC lathe were analyzed and its chatter characteristics were predicted by a chatter analysis method using finite element analysis and 3 dimensional cutting dynamics. The simulated results showed very complex characteristics of chatter vibration and the borderline of limiting depth of cut was used as the stability limit. To check the validity of this method, cutting tests were done in the CNC lathe using a boring bar as a tool because boring process is very weak due to long overhang . The experimental results showed that the simplified borderline was to be considered as limiting depth of cut at which the chatter vibration starts and the stability limits depended on various cutting parameters such as cutting speed, feed and nose radius of tool.

  • PDF

Numerical analysis of Self-Boring Pressuremeter test results using FEM - Consolidation characteristics of clay (유한요소해석을 이용한 SBP 시험의 결과해석 - 점성토 지반의 압밀특성)

  • 장인성;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.67-74
    • /
    • 1999
  • Self-Boring Pressuremeter Test(SBPT) is known to be the most effective in-situ test method which can reliably determine consolidation characteristics as well as deformation modules and untrained shear strength. In order to derive the coefficient of consolidation using SBPT results it is necessary to obtain the dissipation behavior from the pore pressure change with time during constant radial strain(generally 10%) and to derive the reliable time factor(Τ) from the analytical method which considers the real in-situ conditions. As previous studies on time factor are based on the assumptions of plane strain condition that the membrane of SBP is infinite, of untrained condition during the expansion of the probe and of elastic soil behavior during consolidation, these analyses can't consider the real boundary conditions and the real soil behaviour. In this study, consolidation analysis similar to real in-situ conditions including test procedure is conducted using finite element program which employs MCC model and Biot theory. Time factor considering the effects of finite membrane length, the total pressure change during consolidation and partial drainage is proposed and compared with previous results.

  • PDF

A Study on the Optimal Setting of Large Uncharged Hole Boring Machine for Reducing Blast-induced Vibration Using Deep Learning (터널 발파 진동 저감을 위한 대구경 무장약공 천공 장비의 최적 세팅조건 산정을 위한 딥러닝 적용에 관한 연구)

  • Kim, Min-Seong;Lee, Je-Kyum;Choi, Yo-Hyun;Kim, Seon-Hong;Jeong, Keon-Woong;Kim, Ki-Lim;Lee, Sean Seungwon
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.16-25
    • /
    • 2020
  • Multi-setting smart-investigation of the ground and large uncharged hole boring (MSP) method to reduce the blast-induced vibration in a tunnel excavation is carried out over 50m of long-distance boring in a horizontal direction and thus has been accompanied by deviations in boring alignment because of the heavy and one-directional rotation of the rod. Therefore, the deviation has been adjusted through the boring machine's variable setting rely on the previous construction records and expert's experience. However, the geological characteristics, machine conditions, and inexperienced workers have caused significant deviation from the target alignment. The excessive deviation from the boring target may cause a delay in the construction schedule and economic losses. A deep learning-based prediction model has been developed to discover an ideal initial setting of the MSP machine. Dropout, early stopping, pre-training techniques have been employed to prevent overfitting in the training phase and, significantly improved the prediction results. These results showed the high possibility of developing the model to suggest the boring machine's optimum initial setting. We expect that optimized setting guidelines can be further developed through the continuous addition of the data and the additional consideration of the other factors.

A Study on the Development of a Step Cutter with Hybrid Process of Drilling and Boring (드릴, 보링 공정복합형 스텝 커터의 개발)

  • Hwang, Jong Dae;Heo, Yun Nyoung;Oh, Ji Young;Jung, Yoon Gyo;Cho, Sung Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • As demands for being economical, precise drilling process is on the increase. Therefore, the objective of this study is to develop a step cutter that can be controllable through micro dimension and can be changed from separate manufacturing processes of drilling and boring into an integrated one. In order to attain this object the step cutter is designed with a 3D geometric modeling and the design could be modified easily by using parametric modeling methodology. Also, collision is not occurred during manufacturing process because of cutting simulation. The step cutter is assembled by parts made up of 5-axis machining and sintering. Validation tests are accomplished. They show that developed cutter has characteristics such as reduction of machining time as well as the good surface roughness of the machined hole. Indeed, reliability could be obtained from a durability test.

  • PDF

A Study on the Characteristics of CNC Deep Hole Machining for Marine Part Materias with the Single Tube System BTA Tools (싱글튜브시스템 BTA공구에 의한 박용부품소재의 CNC 심공가공 특성에 관한 연구)

  • 전태옥;전언찬;장성규;심성보
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.131-143
    • /
    • 1994
  • The BTA(boring and trepanning association) deep hole machining has an increasing demands because of its wide applications and its good productivity. The main feature of the BTA tools is that the tool cutting edges are unsymmetrically located on the boring head. This provides a stabilizing cutting force resultant necessary for self guidance of the boring head. The BTA tools are capable of machining for having a large length to diameter ratio in single pass. A study of the accuracy and surface finish of holes produced would reveal quite useful information regarding the process. This study deals with the experimental results obtained during BTA machining on SM55C, SM45C steel under differnt machining conditions.

  • PDF