• Title/Summary/Keyword: Boring Machining

Search Result 31, Processing Time 0.035 seconds

A Study on the Dynamic Characteristics of the Composite Boring Bar (복합재료 보링바의 동적 특성에 관한 연구)

  • 황희윤;김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.206-210
    • /
    • 2003
  • Machining of deep holes with conventional boring bars frequently induce chatter vibration because of their low dynamic stiffness which is defined as the product of static stiffness and damping of conventional boring bar materials. In addition, the specific stiffness ($E/{\rho}g$) of boring bars is more important than the static stiffness to increase the fundamental natural frequency of boring bars in high speed machining. Therefore, boring bar materials should have high static stiffness and high damping as well as high specific stiffness. The best way to meet requirements is to employ fiber reinforced composite materials for high speed boring bars because composite materials have high static stiffness, high damping and high specific stiffness compared to conventional boring bar materials. In this study, the dynamic characteristics of carbon fiber epoxy composite boring bars were investigated. From the metal cutting test, it was found that the chatter was not initiated up to the ratio of length to diameter of 10.7 at the rotating speed of 2,500 rpm.

  • PDF

탄소섬유 복합재료 보오링바의 Chatter 특성에 관한 연구

  • 김형철;김기수;함승덕;이대길;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.22-31
    • /
    • 1991
  • Machining with boring bars frequently induce chatter vibration because of the low stiffness and damping of cantilever shape of boring bars. To increase stiffness and damping, a carbon fiber epoxy composite boring bar was designed, manufactured and tested. The natural frequency of the carbon fiber epoxy composite boring bar in the free-free end condition was incerased more than 50% over that of the steel boring bar, and the damping of the carbon fiber epoxy composite boring bar was also increased 450%. The fundamental natural frequency of the carbon fiber epoxycomposite boring bar in the cantilever beam condition was found to be increased 20-30% over that of the steel boring bar in overhang length range 140-200mm. In machining S45C tapered workpieces, the limit of the overhang length of the steel boring bar was about 170mm in cutting speed 140m/min.

A Study on the Characteristics of CNC Deep Hole Machining for Marine Part Materias with the Single Tube System BTA Tools (싱글튜브시스템 BTA공구에 의한 박용부품소재의 CNC 심공가공 특성에 관한 연구)

  • 전태옥;전언찬;장성규;심성보
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.131-143
    • /
    • 1994
  • The BTA(boring and trepanning association) deep hole machining has an increasing demands because of its wide applications and its good productivity. The main feature of the BTA tools is that the tool cutting edges are unsymmetrically located on the boring head. This provides a stabilizing cutting force resultant necessary for self guidance of the boring head. The BTA tools are capable of machining for having a large length to diameter ratio in single pass. A study of the accuracy and surface finish of holes produced would reveal quite useful information regarding the process. This study deals with the experimental results obtained during BTA machining on SM55C, SM45C steel under differnt machining conditions.

  • PDF

A Study on the Development of a Step Cutter with Hybrid Process of Drilling and Boring (드릴, 보링 공정복합형 스텝 커터의 개발)

  • Hwang, Jong Dae;Heo, Yun Nyoung;Oh, Ji Young;Jung, Yoon Gyo;Cho, Sung Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • As demands for being economical, precise drilling process is on the increase. Therefore, the objective of this study is to develop a step cutter that can be controllable through micro dimension and can be changed from separate manufacturing processes of drilling and boring into an integrated one. In order to attain this object the step cutter is designed with a 3D geometric modeling and the design could be modified easily by using parametric modeling methodology. Also, collision is not occurred during manufacturing process because of cutting simulation. The step cutter is assembled by parts made up of 5-axis machining and sintering. Validation tests are accomplished. They show that developed cutter has characteristics such as reduction of machining time as well as the good surface roughness of the machined hole. Indeed, reliability could be obtained from a durability test.

  • PDF

Influence of fixed pressure on the machining accuracy of inner diameter of hollow shaft (고정압이 중공축 내경의 가공정밀도에 미치는 영향)

  • Jeon, Young-Seog;Jang, Sung-Min;Kang, Shin-Gil
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.381-387
    • /
    • 2010
  • This paper presents a study of the influence of fixed pressure in turning. The effect of roundness error and diameter deformation were studied with respect to the fixed pressure applied inside the cylindrical work piece made by boring tool in CNC lathe. The boring tool used in this study is a tungsten carbide coated. The material of workpiece is SM45C and the machining method is dry cutting. Cutting conditions as cutting speed, feed rate and depth of cut are constant. Finally, the change of fixed pressure had influence on the roundness error and diameter deformation.

Quality Check Monitoring System for Advancing the Yield Rate based on Sensor (베어링 생산수율 향상을 위한 센서기반 품질 체크 모니터링 장치)

  • Xiang, Zhao;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper presents the monitoring method of machining error and quality check to improve the productivity of boring manufacturing process. Machining error usually appears as the offset of spatial location of actual cutting path compared to ideal cutting path. In order to monitor an error of workpiece, multiple factors affecting quality of boring, such as distortion of workpiece, clamping error, radial rotation error of the spindle and motion error of machine tools, were took into account. To verify the productive quality, we propose the quality check system. The system based on IT convergence analyzes the process error rate and saves the analyzed data in memory. Also, these play important roles in detecting an inferior production goods and can decrease the production cost and loss of bearing.

연속계 해석에 의한 보오링바의 비선형 동적 거동

  • 박수길;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.137-141
    • /
    • 1993
  • In the case of a boring bar, the vibration amplitude is generallylarge due to its high slenderness. The boring bat is then modelled as a cantilever with dynamic force acting at the free end and a generalized model of nonlinear continous system is obtained. The Analysis of model is conducted for the specific case with a zero side cutting edge angle. The dynamic behaviour is investigated for machining processes in which the the overlap factor of regenerative effect is considered. The vibration characteristics of boring bar depth of cut rather than feed rate in given slenderness.

A study on the Change of Diameter Based on Cutting Conditions in AL6061-T4 Boring Machining (AL6061-T4의 보링가공 시 절삭조건에 따른 직경 변화에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.49-54
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the change in the spindle speed and the feed rate on the diameter change of a hole using a boring cutter for the internal boring process of AL6061-T4 alloys. The experimental results are quantitatively analyzed by applying the factor analysis and the response surface analysis of the experimental design method. The tendency of the diameter change according to the change in the spindle speed and feed level is also evaluated. During the internal boring process of AL6061-T4 alloys, the main factor affecting the diameter change is the spindle speed in which the diameter decreases as the number of revolutions increases. In addition, the diameter tends to increase as the feed is increased; however, as the number of spindle revolutions increases, the influence of the feed decreases.

A Study on the Optimal Cutting Condition in Boring using MQL System (MQL장치를 이용한 보링 가공시 최적절삭조건에 관한 연구)

  • Han, Dong-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.82-87
    • /
    • 2011
  • Lubrication has an important role to reduce frictional forces and temperature between cutting chips and the face of a tool. However, it has harmful effects to workers' health and working environment. The purpose of this thesis is to find cutting conditions through the quality analysis in boring for SM45C steel using MQL(Minimum Quantity Lubrication). Machining process is super drill, tip drill, end mill and boring in order. Experimental factors of boring and the quantity of mist air are properly selected. With the analysis of experimental data, this thesis shows that boring with MQL improves the surface roughness when spindle speed is 934rpm or feeding speed is 74mm/min.

A Study on the Change in Hole Precision with Slenderness Ratio of Boring Cutter (보링커터의 세장비에 따른 구멍 정밀도 변화에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.7-12
    • /
    • 2017
  • It is assumed that the buckling and cutting conditions depending on the slenderness ratio will affect the machining quality of the rotary boring tool mounted on a milling machine. In this study, the boring cutter was designed and fabricated to precisely create the Ø30 hole. Through the performance evaluation, the accuracy of the hole according to the slenderness ratio and cutting conditions was analyzed, and the following conclusions were obtained. The higher the RPM, the smaller the change in the working diameter, and the smaller the hole. Next, the smaller the slenderness ratio, the smaller the change in straightness due to the change in cutting conditions. Finally, the slenderness ratio also affects the tendency for changes in the concentricity. The larger the slenderness ratio, the more sensitive the concentricity to changes in cutting conditions.