• Title/Summary/Keyword: Borehole test

Search Result 230, Processing Time 0.025 seconds

Groundwater Flow Analysis in Fractured Rocks Using Zonal Pumping Tests and Water Quality Logs (구간양수시험과 수질검층자료에 의한 균열암반내 지하수 유동 분석)

  • Hamm, Se-Yeong;Sung, Ig-Hwan;Lee, Byeong-Dae;Jang, Seong;Cheong, Jae-Yeol;Lee, Jeong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.411-427
    • /
    • 2006
  • This study aimed to recognize characteristics of groundwater flow in fractured bedrocks based on zonal pump-ing tests, slug tests, water quality logs and borehole TV camera logs conducted on two boreholes (NJ-11 and SJ-8) in the city of Naju. Especially, the zonal pumping tests using sin91e Packer were executed to reveal groundwater flow characteristics in the fractured bedrocks with depth. On borehole NJ-11, the zonal pumping tests resulted in a flow dimension of 1.6 with a packer depth of 56.9 meters. It also resulted in lower flow dimensions as moving to shallower packer depths, reaching a flow dimension of 1 at a 24 meter packer depth. This fact indicates that uniform permissive fractures take place in deeper zones at the borehole. On borehole SJ-8, a flow dimension of 1.7 was determined at the deepest packer level (50 m). Next, a dimension of 1.8 was obtained at 32 meters of packer depth, and lastly a dimension of 1.4 at 19 meters of packer depth. The variation of flow dimension with different packer depths is interpreted by the variability of permissive fractures with depth. Zonal pumping tests led to the utilization of the Moench (1984) dual-porosity model because hydraulic characteristics in the test holes were most suitable to the fractured bedrocks. Water quality logs displayed a tendency to increase geothermal temperature, to increase pH and to decrease dissolved oxygen. In addition, there was an increasing tendency towards electrical conductance and a decreasing tendency towards dissolved oxygen at most fracture zones.

Development of Integrated Type Main Frame and Downhole Sonde Apparatus for Hydraulic Packer Testing in Seabed Rock under High Water Pressure (고수압 해저지반 수리특성 조사용 일체형 메인 프레임과 공내 측정장치 개발)

  • Bae, SeongHo;Kim, Jangsoon;Jeon, Seokwon;Kim, Hagsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.258-276
    • /
    • 2018
  • The accurate and quantitative ground information on the hydraulic conductivity characteristics of rock mass is one of the key factors for evaluation of the hydro-geological behaviour of rock mass around an excavated opening under high water pressure. For tunnel and rock structures in seabed, where the sea acts as an infinite source of water, its importance become greater with increasing construction depth below sea level. In this study, to improve the problems related with poor system configuration and incorrect data acquisition of previous hydraulic packer testing equipment, we newly developed an integrated main frame and 30 bar level waterproof downhole sonde apparatus, which were optimized for deep hydraulic packer test in seabed rock mass. Integration of individual test equipment into one frame allows safe and efficient field testing work on a narrow offshore drilling platform. For the integrated type main frame, it is possible to make precise stepwise control of downhole net injection pressure at intervals of $2.0kg_f/cm^2$ or less with dual hydraulic oil volume controller. To ensure the system performance and the operational stability of the prototype mainframe and downhole sonde apparatus, the field feasibility tests were completed in two research boreholes, and using the developed apparatus, the REV(Representative Elementary Volume) scale deep hydraulic packer tests were successfully carried out at a borehole located in the basalt region, Jeju. In this paper, the characteristics of the new testing apparatus are briefly introduced and also some results from the laboratory and in-situ performance tests are shown.

An Analysis on the Bleeding Effect of SCW Ground Heat Exchanger using Thermal Response Test Data (열응답시험 데이터를 이용한 SCW형 지중열교환기 블리딩 효과 분석)

  • Chang, Keun-Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.512-520
    • /
    • 2020
  • Recently, the applications of the standing column well (SCW) ground heat exchanger (GHX) have increased significantly in Korea as a heat transfer mechanism of ground source heat pump systems (GSHP) because of its high heat capacity and efficiency. Among the various design and operating parameters, bleeding was found to be the most important parameter for improving the thermal performance, such as ground thermal conductivity and borehole thermal resistance. In this study, a bleeding analysis model was developed using the thermal response test data, and the effects of bleeding rates and bleeding locations on the thermal performance of anSCW were investigated. The results show that, when the ground water flows into the top of anSCW, the time variation of circulating water temperature decreased with increasing bleeding rate, and the ground thermal conductivity increases by as much as 179% with a 30% bleeding rate. When the ground water flows into the bottom of the SCW, the circulating water temperatures become almost constant after the increase in the beginning time because the circulating water exchanges heat with the ground structure before mixing with the ground water at the bottom.

Assesment of the Characteristics of Hydraulic Storage in Volcanic Region for Applying the Artificial Hydraulic Fracturing - Ulleungdo Site (인공수압파쇄 적용을 위한 울릉도 화산암류 저류특성 평가)

  • Kim Man-Il;Chang Kwang-Soo;Suk Hee-Jun;Kim Hyoung-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.125-134
    • /
    • 2006
  • In order to establish the in-situ application of the artificial storage and recovery (ASR) technology which is used the property of the aquifer storage of groundwater. We carried out to the in-situ experiments such as borehole TV logging, pumping test and artificial hydraulic fracturing in volcanic island, Ulleungdo. In-situ experiments were conducted to divide the before- and after-hydraulic fracturing. Pumping test was achieved to confirm the two fracture zones, GL-13m and GL-21m, which are determined by the borehole TV logging. From the results of the before- and after-pumping tests, the hydraulic connectivity was confirmed to locate at GL-13m in the residual deposit zone of pumice media as alluvium. However, in the bedrock tone at GL-21m the hydraulic connectivity could be considered to faulty. Consequently, in this study area the artificial recharge has a little unsatisfied to geo-structural condition and desired to more detail investigation works.

Geostatistical Integrated Analysis of MASW and CPTu data for Assessment of Soft Ground (연약지반 평가를 위한 MASW탐사와 CPTu 자료의 지구통계학적 복합 분석)

  • Ji, Yoonsoo;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.187-199
    • /
    • 2016
  • In order to delineate the soft ground distribution, an integrated geostatistical analysis was performed using the MASW (Multichannel Analysis of Surface Wave) which has the information of overall region and CPTu (Piezo Cone Penetration Test) which provides the direct information of the measuring point of the ground. MASW results were known to have close relationship with the ground stiffness. This correlation was confirmed through the comparison of MASW data obtained from two survey lines to the laboratory test with extracted soil samples. 3D physical property distribution in the study area was acquired by geostatistical integrated analysis with the data of tip resistance ($q_c$) and pore pressure (u) from the CPTu obtained at 6 points within the study area. The integrated analysis was conducted by applying the COSGSIM (Sequential Gaussian Co-Simulation) technology which can carry out the simulation in accordance with the spatial correlation between the MASW results and both tip resistance and pore pressure. Besides the locations of CPTu, borehole investigations were also conducted at two different positions. As a result, the N value of SPT and borehole log could be secured, so these data were used for the analysis of the geotechnical engineering accuracy of the integrated analysis result. For the verification of reliability of the 3D distribution of tip resistance and pore pressure secured through integrated analysis, the geotechnical information gained from the two drilling areas was compared, and the result showed extremely high correlation.

Three Dimensional Behaviour of the Rock Mass around a Large Rock Cavern during Excavation (지하 대공동의 3차원 굴착거동에 관한 연구)

  • 이영남;서영호;주광수
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • This paper presents the results of deformation measurement and numerical analysis carried out to study the behaviour of the rock mass around large underground oil storage caverns. Displacements during excavation have been monitored using borehole extensometers which had been installed before the excavation of caverns proceeded. Numerical analysis has been carried out to examine the three-dimensional behaviour of rock and the face advance effect. The input parameters for this analysis were determined from the results of laboratory and field tests. The deformation modulus of the rock mass was determined from plate loading test at the site and in-situ stresses were measured from the overcoring method with USBM deformation gauge. The results from this study gave a clear picture for three-dimensional behaviour of the rock mass, hence would be used for the optimum design.

  • PDF

TWO DIMENSIONAL STUDY OF HYDRAULIC FRACTURING CRITERIA IN COHESIVE SOILS

  • 유택영사
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03b
    • /
    • pp.3-12
    • /
    • 1994
  • Based on the shear failure mechanism, hydraulic fracturing criteria are extended to three dimensional stress state. According to the situation of the directions of borehole and major principal stress axes, three equations can be derived for three dimensional hydraulic fracturing problems. By comparing these equations, a single criterion is selected for hydraulic fracturing pressure in cohesive soils. The criterion is a function of maximum principal stress, minimum principal stress and soil parameters in UU conditions. The equation indicates that with any increase in maximim principal stress, hydraulic fracturing pressure decreases. In order to prove the integrity of the criteria, laboratory tests are performed on compacted cubical specimens using true a triaxial apparatus. The shape and direction of fractures are determined by injecting colored water after fracture initiation. It is found that the direction of fractures are perpendicular to the o1 plane.

  • PDF

Case Study of Blasting Pattern Design for Tunnelling in Which Considered Blast Induced Vibration Affected Across Buildings (터널 굴착 시 주변 구조물에 미치는 영향을 고려한 발파 설계 사례)

  • Baek, Seung-Kyu;Choo, Seok-Yeon;Yoon, Jong-O;Baek, Un-Il;Park, Hyung-Seop
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.377-386
    • /
    • 2006
  • In generally blasting pattern design is carried out in-situ borehole blasting test and its analysis. We added the 3D numerical analysis for blast induced vibrations. This paper is case study of 3D numerical analysis in which considered blast induced vibration affected across buildings, and then we design the blasting pattern of tunnel excavation.

Rock Mass Classification of Tertiary Unconsolidated Sedimentary Rocks In Pohang Area (포항지역 신생대 제3기 미고결 퇴적층의 암반분류)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Yung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.999-1008
    • /
    • 2009
  • A series of sedimentary rocks which are formed in the Tertiary are distributed around Samcheok(Samcheok-Pukpyoung basin), Younghae(Younghae basin), Pohang(Pohang basin), Gyeongju(Yangnam basin), Ulsan(Ulsan basin), Jeju(Seogyuipo formation) in the southern region of the Korean Peninsula. This study concerned with geological, geophysical, geotechnical properties of the unconsolidated rocks in the Pohang area. A consolidated rocks are classified as hard rock - soft rock - weathered rock - residual soil follows in degree of weathering. But unconsolidated rocks has soil properties as well as rock's at the same time. The results of field excursion, boring, borehole-logging, rock testing, geophysical survey, laboratory test are soft rock range, but the durability of the rock until the residual soil from the weathered rock. We accomplished the rock mass classification of the unconsolidated rocks.

  • PDF

Construction of Efficient Downhole Seismic Testing System by the Round Robin Test (상호검증시험을 통한 효율적인 다운홀 탄성파 기법 수행 시스템의 구성)

  • Bang, Eun-Seok;Kim, Ki-Seog;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.133-147
    • /
    • 2007
  • Downhole seismic method is very economic and easy of operation because it uses only one borehole and simple surface source to obtain the shear wave velocity ($V_s$) profile of a site. Even though it is widely used by the site investigation companies, universities and institutes, however, the $V_s$ profile determined by downhole seismic method has often low reliability due to employment of wrong combinations of field losing equipment and interpretation method and deficiency of experience. Round robin test was performed and testing equipment and procedure were compared. Adequate downhole seismic testing equipment was constructed based on the comparison and verification study of the round robin test. The data acquisition and software interpretation were also developed for automation and quick test in field. Finally, the effectiveness and applicability were verified through the field test by using the constructed testing system.