• Title/Summary/Keyword: Bore hole

Search Result 74, Processing Time 0.019 seconds

Development of 3-Dimensional Stress Measurement System by Bore hole Bottom Deformation Method (공저변형법에 의한 3차원응력측정 시스템의 개발)

  • Lee, Ki-Ha;Ishijima, Yoji;Fujii, Yoshiaki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.34-41
    • /
    • 2006
  • A 3-dimensional stress measurement system based on the bore hole bottom deformation method, which is one of the stress relief methods, was developed. A pilot bore hole is drilled from the bottom of a bore hole and the stress meter is inserted into the pilot bore hole in the method. The bore hole is advanced as an over coring and the deformations in seven directions are measured by cantilever type-sensors. Using the cantilever type-sensors saves time for hardening of glue. No cable connection between the stress meter and a data logger is necessary since a compact data logger is installed in the stress meter. The accuracy of the stress meter was confirmed by a biaxial test for a Shikotsu welded tuff block although in-situ tests have not been carried out yet.

  • PDF

Sensitivity of resistance forces to localized geometrical imperfections in movement of drill strings in inclined bore-holes

  • Gulyayev, V.I.;Khudoliy, S.N.;Andrusenko, E.N.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • The inverse problem about the theoretical analysis of a drill string bending in a channel of an inclined bore-hole with localized geometrical imperfections is studied. The system of ordinary differential equations is first derived based on the theory of curvilinear flexible elastic rods. One can then use these equations to investigate the quasi-static effects of the drill string bending that may occur in the process of raising, lowering and rotation of the string inside the bore-hole. The method for numerical solution of the constructed equations is described. With the proposed method, the phenomenon of the drill column movement, its contact interaction with the bore-hole surface, and the frictional seizure can be simulated for different combinations of velocities, directions of rotation and axial motion of the string. Geometrical imperfections in the shape of localized smoothed breaks of the bore-hole axis line are considered. Some numerical examples are presented to illustrate the applicability of the method proposed.

Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface

  • Gulyayev, V.I.;Andrusenko, E.N.;Shlyun, N.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.427-448
    • /
    • 2014
  • At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.

Development of a Subsurface Exploration Analysis System Using a Clustering Technique on Bore-Hole Information (시추공 정보의 클러스터링 기법을 이용한 지반분석시스템의 개발)

  • 이규병;김유성;조우석;김영진
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.301-315
    • /
    • 2000
  • Every, year, a great amount of site investigation data is collected on site to obtain sufficient conditions. Investigation of subsurface conditions is prerequisite to the design and construction of structures and also provides information on ground properties such as geologic formation and types of soil. This data set, which portrays real representation of ground conditions over the existing geologic and soil maps, could be further utilized for analyzing the subsurface conditions. It is therefore necessary to develope a subsurface exploration analysis system which is able to extract the valuable information from the heterogeneous, non-normalized subsurface investigation data. This paper presents the overall design scheme and implementation on a subsurface exploration analysis system. The analysis system employs one of data set such as bore-hole data. The clustering technique employed in the developed system makes a large volume of bore-hole data into several groups in terms of ground formation and geographical vicinity. As a result of clustering, each group or cluster consists of bore-hole data with similar characteristics of subsurface and geographical vicinity. In addition, each clustered data is displayed on digital topographical map with different color so that the analysis of site investigation data could be performed in more sensible ways.

  • PDF

A Study on Engineering Characteristics of the Drilling Fluid Dependingon the Mix Water (배합수에 따른 안정액의 공학적 특성 분석)

  • Choi, Jung-Hyuk;Yoo, Chung-Sik;Han, Yun-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.43-52
    • /
    • 2016
  • This paper presents the results of a engineering characteristic to the effect of drilling fluid with different mix designs for use in bore hole collapse prevention. The bore hole collapse prevention mechanism for the bentonite based drilling fluid was first discussed together with the effect of conditioning with different additives on engineering characteristics of bentonite based drilling fluid. As result, bentonite with polymer have a outstanding characteristics as compared to CMC Properties thickening effect In the case of sea water with attatulgite be superior to bentonite. Therefore, in this paper presented qualitative result on the performance of the drilling fluid depending on the water.

A Study on the Blasting Dynamic Analysis Using Superposition Modeling Data (중첩모델링자료를 활용한 발파 동해석 기법에 관한 연구)

  • Park, Ji-Woo;Kang, Choo-Won;Go, Jin-Seok;Jang, Ho-Min
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.280-288
    • /
    • 2008
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis using measurement vibration waveform which is measured by bore hole blasting or test blasting has been increased recently in order to analyze the effect of the blast-induced vibration. The waveform made by bore hole blasting has the similar vibration level and duration to those the waveform of sing hole has. However, there can be a little difference in attenuation characteristics with the blast induced vibration waveform in the field. Through the superposition modeling of single hole waveform, I obtained the vibration waveform on the blasting condition changes and conducted dynamic analysis using this waveform in this study.

Reliable Evaluation of Dynamic Ground Properties from Cross-hole Seismic Test using Spying-loaded Lateral Impact Source (스프링식 횡방항 발진 크로스홀 탄성파 시험을 통한 지반 동적 특성의 합리적 산정)

  • Sun, Chang-Guk;Mok, Young-Jin;Chung, Choong-Ki;Kim, Myoung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.1-13
    • /
    • 2006
  • Soil and rock dynamic properties such as shear wave velocity $(V_s)$, compressional wave velocity $(V_p)$ and corresponding Poisson's ratio (v) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as $V_s,\;V_p$ and v with depth from the soil surface to the engineering and seismic bedrock were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

Evaluation of dynamic ground properties using laterally impacted cross-hole seismic test (횡방향 발진 크로스홀 탄성파 시험을 이용한 지반의 동적 특성 평가)

  • Mok Young-Jin;Sun Chang Guk;Kim Jung-Han;Jung Jin-Hun;Park Chul-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.155-175
    • /
    • 2005
  • Soil and rock dynamic properties such as shear wave velocity (VS), compressional wave velocity (VP) and corresponding Poisson's ratio ( v ) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as VS, VP and v with depth were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

  • PDF

Case study on the prediction of vertical and horizontal pile capacity using pressuremter test results (PMT결과를 이용한 말뚝의 연직 및 수평지지력 산정 사례 연구)

  • 김동철;최용규;정성기;정창규;이광욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.431-438
    • /
    • 1999
  • Vertical congressive and horizontal pile load tests were performed to a instrumented large diameter (D : 1,000 mm) drilled shaft. A drilled shaft was penetrated into the weathered soil and weathered rock. PMT was done for evaluation of properties for these strata. It was expected to be difficult to get undisturbed samples of weathered soils and rocks. Thus. PMT was done at the several selected depths. In those strata, to prevent the test bore hole from collapsing, bentonite slurry was used for making the test bore hole. In this study. soil properties was evaluated by means of PMT results and estimating method (direct method, the Memard method) of vertical pile capacity and horizontal pile behaviors were summarized. Also, vertical and horizontal pile capacity were calculated using PMT and pile load test results.

  • PDF

Experimental Study on the Effect of Drilling Fluid with Different Mix Designs for Bore Hole Collapse Prevention (시추 안정액 배합설계에 따른 공벽 붕괴방지 효과에 관한 실험적 연구)

  • Yoo, Chung-Sik;Choi, Jung-Hyuk;Han, Yun-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • This paper presents the results of a reduced-scale physical model investigation into the effect of drilling fluid with different mix designs for bore hole collapse prevention. The bore hole collapse prevention mechanism for the bentonite based drilling fluid was first discussed together with the effect of conditioning with different additives on engineering characteristics of bentonite based drilling fluid. Reduced-scale model tests were then carried out considering field procedures for cases with a decomposed granitic soil with 20% fines and a sand with various drilling fluids with different mix designs. The results indicated that the addition of polymer to the bentonite based drilling fluid decreases the amount of drilling fluid injected, the drilling fluid infiltration thickness and increases the final depth of excavation. Also revealed is that the effect of polymer on the performance of drilling fluid is more pronounced in the decomposed granite soil with 20% fines than the sand. Practical implications of the findings from this study are discussed in great detail.