• 제목/요약/키워드: Boosting algorithm

검색결과 172건 처리시간 0.032초

The Coverage Area for Extended Delivery Service in Eastern Economic Corridor (EEC): A Case of Thailand Post Co., Ltd

  • AMCHANG, Chompoonut
    • Journal of Distribution Science
    • /
    • 제18권4호
    • /
    • pp.39-50
    • /
    • 2020
  • Purpose: This paper aimed to study the current locations of post offices to analyze service coverage area for parcel delivery in the Eastern Economics Corridor (EEC), which must be considered in the last mile to extend delivery service for e-commerce growth. Thailand Post was the case study in this paper. Research design, data and methodology: To involve solving the delivery service area under the last mile condition, the authors proposed a network analysis to determine service radius by employing a Geographic Information System (GIS). Furthermore, this paper applied Dijkstra's algorithm as a network analysis tool from GIS for analyzing the last mile service coverage area in a new economics zone. At the same time, the authors suggested an approach as a solution to locate last mile delivery center in EEC. Results: The results of the study pointed out that Thailand Post should consider more last mile delivery centers in EEC to support its express service in urban areas as well as improve the efficiency of service coverage for parcel delivery and create more advantages against competitors. Conclusions: This paper proposes a network analysis to extend the last mile service for parcel delivery by following Dijkstra's algorithm from GIS and a solution approach to add more last mile delivery centers. The results of the research will contribute to boosting customer satisfaction for last mile delivery service and enabling easy accessibility to a service center in EEC.

Real-time Smoke Detection Based on Colour Information, Morphological and Dynamic Features of the Smoke (연기의 색 정보, 형태학적 및 동적 특징 기반의 실시간 연기 검출)

  • Kim, Hyun-Tae;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제10권1호
    • /
    • pp.21-26
    • /
    • 2015
  • In this paper, we propose a system which can detect the smoke in real time from the high-quality IP camera. For real-time processing, open directly the RTSP streams transmitted from the IP camera using the library FFmpeg as opening a video file. To recognize smoke, color information and morphological characteristics of smoke, as well as the dynamic characteristics of the smoke also considered for candidate regions. To combine the characteristics of the various smoke effectively, the Adaboost algorithm, was used as the boosting algorithm finally. Through the experiments with input videos from IP camera, the proposed algorithms were useful to detect smokes.

DR Image Enhancement Using Multiscale Non-Linear Gain Control For Laplacian Pyramid Transformation (라플라시안 피라미드에서의 다중스케일 비선형 이득 조절을 이용한 DR 영상 개선)

  • Shin, Dong-Kyu;Lee, Jin-Su;Kim, Sung-Hee;Park, In-Sung;Kim, Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • 제28권2호
    • /
    • pp.199-204
    • /
    • 2007
  • In digital radiography, to improve the contrast of digital radiography image, the multi-scale nonlinear amplification algorithm based on unsharp masking is one of the major image enhancement algorithms. In this paper, we used the Laplacian pyramid to decompose a digital radiography(DR) image. In our simulation, the DR image was decomposed into seven layers and the coefficients of the each layer was amplified with nonlinear function. We also imported a noise containment algorithm to limit noise amplification. To enhance the contrast of image, we proposed a new adaptive non-linear gain amplification coefficients. As a result of having applied to some clinical data, a detail visibility was improved significantly without unacceptable noise boosting. Images that acquired with the proposed adaptive non-linear gain coefficients have shown superior quality to those that applied similar gain control method and expected to be accepted in the clinical applications.

An Ensemble Classifier Based Method to Select Optimal Image Features for License Plate Recognition (차량 번호판 인식을 위한 앙상블 학습기 기반의 최적 특징 선택 방법)

  • Jo, Jae-Ho;Kang, Dong-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제65권1호
    • /
    • pp.142-149
    • /
    • 2016
  • This paper proposes a method to detect LP(License Plate) of vehicles in indoor and outdoor parking lots. In restricted environment, there are many conventional methods for detecting LP. But, it is difficult to detect LP in natural and complex scenes with background clutters because several patterns similar with text or LP always exist in complicated backgrounds. To verify the performance of LP text detection in natural images, we apply MB-LGP feature by combining with ensemble machine learning algorithm in purpose of selecting optimal features of small number in huge pool. The feature selection is performed by adaptive boosting algorithm that shows great performance in minimum false positive detection ratio and in computing time when combined with cascade approach. MSER is used to provide initial text regions of vehicle LP. Throughout the experiment using real images, the proposed method functions robustly extracting LP in natural scene as well as the controlled environment.

The Effect of Input Variables Clustering on the Characteristics of Ensemble Machine Learning Model for Water Quality Prediction (입력자료 군집화에 따른 앙상블 머신러닝 모형의 수질예측 특성 연구)

  • Park, Jungsu
    • Journal of Korean Society on Water Environment
    • /
    • 제37권5호
    • /
    • pp.335-343
    • /
    • 2021
  • Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting SSC. However, SSC is affected by both the natural and anthropogenic environment, making it challenging to predict SSC. Recently, advanced machine learning models have increasingly been used for water quality prediction. This study developed an ensemble machine learning model to predict SSC using the XGBoost (XGB) algorithm. The observed discharge (Q) and SSC in two fields monitoring stations were used to develop the model. The input variables were clustered in two groups with low and high ranges of Q using the k-means clustering algorithm. Then each group of data was separately used to optimize XGB (Model 1). The model performance was compared with that of the XGB model using the entire data (Model 2). The models were evaluated by mean squared error-ob servation standard deviation ratio (RSR) and root mean squared error. The RSR were 0.51 and 0.57 in the two monitoring stations for Model 2, respectively, while the model performance improved to RSR 0.46 and 0.55, respectively, for Model 1.

Boosting the Face Recognition Performance of Ensemble Based LDA for Pose, Non-uniform Illuminations, and Low-Resolution Images

  • Haq, Mahmood Ul;Shahzad, Aamir;Mahmood, Zahid;Shah, Ayaz Ali;Muhammad, Nazeer;Akram, Tallha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3144-3164
    • /
    • 2019
  • Face recognition systems have several potential applications, such as security and biometric access control. Ongoing research is focused to develop a robust face recognition algorithm that can mimic the human vision system. Face pose, non-uniform illuminations, and low-resolution are main factors that influence the performance of face recognition algorithms. This paper proposes a novel method to handle the aforementioned aspects. Proposed face recognition algorithm initially uses 68 points to locate a face in the input image and later partially uses the PCA to extract mean image. Meanwhile, the AdaBoost and the LDA are used to extract face features. In final stage, classic nearest centre classifier is used for face classification. Proposed method outperforms recent state-of-the-art face recognition algorithms by producing high recognition rate and yields much lower error rate for a very challenging situation, such as when only frontal ($0^{\circ}$) face sample is available in gallery and seven poses ($0^{\circ}$, ${\pm}30^{\circ}$, ${\pm}35^{\circ}$, and ${\pm}45^{\circ}$) as a probe on the LFW and the CMU Multi-PIE databases.

Comparing the Performance of 17 Machine Learning Models in Predicting Human Population Growth of Countries

  • Otoom, Mohammad Mahmood
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.220-225
    • /
    • 2021
  • Human population growth rate is an important parameter for real-world planning. Common approaches rely upon fixed parameters like human population, mortality rate, fertility rate, which is collected historically to determine the region's population growth rate. Literature does not provide a solution for areas with no historical knowledge. In such areas, machine learning can solve the problem, but a multitude of machine learning algorithm makes it difficult to determine the best approach. Further, the missing feature is a common real-world problem. Thus, it is essential to compare and select the machine learning techniques which provide the best and most robust in the presence of missing features. This study compares 17 machine learning techniques (base learners and ensemble learners) performance in predicting the human population growth rate of the country. Among the 17 machine learning techniques, random forest outperformed all the other techniques both in predictive performance and robustness towards missing features. Thus, the study successfully demonstrates and compares machine learning techniques to predict the human population growth rate in settings where historical data and feature information is not available. Further, the study provides the best machine learning algorithm for performing population growth rate prediction.

Prediction models of rock quality designation during TBM tunnel construction using machine learning algorithms

  • Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
    • Geomechanics and Engineering
    • /
    • 제38권5호
    • /
    • pp.507-515
    • /
    • 2024
  • An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.

A Comparative Study of Phishing Websites Classification Based on Classifier Ensemble

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • 제21권5호
    • /
    • pp.617-625
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

Disguised-Face Discriminator for Embedded Systems

  • Yun, Woo-Han;Kim, Do-Hyung;Yoon, Ho-Sub;Lee, Jae-Yeon
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.761-765
    • /
    • 2010
  • In this paper, we introduce an improved adaptive boosting (AdaBoost) classifier and its application, a disguised-face discriminator that discriminates between bare and disguised faces. The proposed classifier is based on an AdaBoost learning algorithm and regression technique. In the process, the lookup table of AdaBoost learning is utilized. The proposed method is verified on the captured images under several real environments. Experimental results and analysis show the proposed method has a higher and faster performance than other well-known methods.