• Title/Summary/Keyword: Boost Pressure

Search Result 69, Processing Time 0.026 seconds

Study on the Simulation of the Intake and Exhaust Systems of a Gasoline Engine Using BOOST (BOOST를 이용한 가솔린 기관 흡·배기 계통의 시뮬레이션에 관한 연구)

  • Lee, Dae-Kwon;Yoon, Keon-Sik;Ryu, Soon-Pil;Woo, Seok-Keun;Seong, Hwal-Gyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.23-32
    • /
    • 2013
  • This paper presents the simulation of the multi-cylinder 4-stroke cycle spark-ignition engine using a commercial simulation tool, AVL BOOST. Various models were examined to select the appropriate models that would best serve to analyze the main components of the intake and exhaust systems-the plenum chamber, the muffler and the exhaust manifold branch junction. For the plenum chamber and the muffler, the tank model and the pipe model were tested. In order to analyze the exhaust manifold branch junction, a complicated model which reflects the actual shape and involves pressure drops was compared to a simplified one. The results show that both the tank model and the pipe model are applicable with satisfying accuracies for the plenum chamber and the muffler. However, the tank model is more desirable in regards to convenience in modeling and efficiency in calculation. Though both the complicated model and the simplified model show satisfying accuracies for the exhaust manifold branch junction, the simplified model is recommended in regards to convenience in modeling and efficiency in calculation.

Study on the simulation of a spark ignition engine using BOOST (상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구)

  • Jeong, Chang-Sik;Woo, Seok-Keun;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.733-742
    • /
    • 2016
  • In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

Appraisement of Design Parameters through Fluid Dynamic Analysis in Thermal Vapor Compressor (열 증기 압축기 내의 유동해석을 통한 설계 인자들의 영향 분석)

  • Park I. S.;Kim H. W.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.155-158
    • /
    • 2002
  • In general, TVC(Thermal Vapor Compressor) is used to boost/compress a low pressure vapor to a higher pressure for further utilization. The one-dimensional method is simple and reasonably accurate, but cannot realize the detail as like the back flow and recirculation in the mixing chamber, viscous shear effect, and etc. In this study, the axisymmetric How simulations have been performed to reveal the detailed flow characteristics for the various ejector shapes. The Navier-Stokes and energy equations are solved together with the continuity equation In the compressible flow fields. The standard $k-{\epsilon}$ model is selected for the turbulence modeling. The commercial computational fluid dynamic code FLUENT software is used for the simulation. The results contain the entrainment ratio under the various motive, suction and discharge pressure conditions. The numerical results are compared with the experimental data, and the comparison shows the good agreement. The three different flow regimes (double chocking, single chocking and back flow) have been clearly distinguished according to each boundary pressure values. Also the effects of the various shape variables (nozzle position, nozzle outlet diameter, mixing tube diameter, mixing tube converging angle, and etc.) are quantitatively discussed.

  • PDF

A Study on the Response Performances under Transient Operating Conditions in a Turlblocharged Diesel Engine (터보과급 디젤기관의 과도운전시 응답성능에 관한 연구)

  • 최낙정;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1575-1582
    • /
    • 1992
  • This study describes the response performances of actual engine speed, turbocharger speed, air mass flow rate through engine, boost pressure ratio, exhaust temperature and combustion efficiency for a six-cylinder four-stroke turbocharged diesel engine during the change in operating conditions by using the computer simulation with test bed. In order to obtain the transient conditions, a suddenly large load was applied to the simulation engine with the several kinds of inertia moment in turbocharger and engine, and engine set speed. From the results of this study, the following conclusions were summarized The inferior response performances was mainly caused by turbocharger lag, and air mass flow rate and boost pressure ratio were closely related to the turbocharger speed. A reduced moment of turbocharger inertia resulted in less transient speed drop and much faster recovery to the steady state of the engine. The increase of moment of engine inertia reduced cyclic variation of engine speed. When a large load was applied to the engine at high speed, the engine could be fastly recovered. However, when the same load was applied to the engine at low speed, the engine was stalled.

Numerical Analysis on the Mode Transition of Integrated Rocket-Ramjet and Unstable Combusting Flow-Field (일체형 로켓-램제트 모드 천이 및 불안정 연소 유동장 해석)

  • Ko Hyun;Park Byung-Hoon;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.334-342
    • /
    • 2005
  • A numerical analysis is performed using two dimensional axisymmetric RANS (Reynolds Averaged Navier-Stokes) equations system on the transition sequence of the Integrated Rocket Ramjet and the unsteady reacting flow-field in a ramjet combustor during unstable combustion. The mode transition of an axisymmetric ramjet is numerically simulated starting from the initial condition of the boost end phase of the entire ramjet. The unsteady reacting flow-field within combustor is computed for varying injection area. In calculation results of the transition, the terminal normal shock is occurred at the downstream of diffuser throat section and no notable combustor pressure oscillation is observed after certain time of the inlet port cover open. For the case of a small injection area at the same equivalence ratio, periodic pressure oscillation in the combustor leads to the terminal shock expulsion from the inlet and hence the buzz instability occurred.

  • PDF

Working principle & application of comprex pressure wave super charger (Comprex 압력파 과급기의 작동 및 응용)

  • Gyarmathy, George
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.4
    • /
    • pp.24-31
    • /
    • 1985
  • 본 논문은 Comprex압력파 과급기(Pressure-wave Supercharger;이하 PWS)의 공기 역학적인 원 리에 대해 기술하였으며, 또 기체 동력학적인 현상들이 별도의 제어장치없이도 우수한 운전성과 낮은 연료소모율, 적은 배기 배출물을 형성하는 차량들에 대해 기계적으로는 간단하면서도 완벽 한 boosting장치를 만들어 내는데 어떻게 사용될 수 있는지를 설명하였다. 근본적인 목적은 종 래의 turbo charger와 동일이지만 Comprex PWS는 현재 응용되고 있는 승용차가 요구하는 여러 가지면, 즉 1) 부하변동에 대한 충진공기압의 빠른 응답성 2) 엔진속도 전영역에 걸친 높은 boost 효과 3) 배기배출물특성을 좋게할 수 있는 배기가스 재순환(EGR)효과 등에서 종래의 것과 구별된다. 따라서 PWS의 중요한 특징들을 기술하였으며 마지막으로 최근 자동차용 Diesel Engine에의 몇 가지 예를 보았다.

  • PDF

Power Factor improvement of Power Conversion Equipment for High Pressure Sodium Lamps (고압 나트륨 램프 구동용 전력변환장치의 역률 개선)

  • Lee, S.H.;Suh, K.Y.;Lee, H.W.;Lee, S.H.;Mun, S.P.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.147-150
    • /
    • 2002
  • HPSL(High Pressure Sodium lamp)have attracted much attention in recent years, because they offer high luminous efficiency and very long life. Recently, AC-DC converters have been widely as power factor improvement circuits in the power conversion equipment An application of the ZVT-PWM(Zero Voltage Transition Pulse Width Modulation) boost converter, which has great advantage on miniaturization and high power density, to the power factor improvement circuit of the HPSL inverter are described to identify the power factor correction characteristics of the inverter. In this paper the series-parallel resonant inverter(electronic ballast) for driving a HPS lamp is discussed. Finally, a power factor corrector is cascaded in front of the electronic ballast. Consequently, a high power factor above 0.99 and low THD on the line current can be achieved.

  • PDF

Optimization of Heavy-Duty Diesel Engine Operating Parameters Using Micro-Genetic Algorithms (유전알고리즘을 이용한 대형 디젤 엔진 운전 조건 최적화)

  • Kim, Man-Shik;Liechty, Mike P.;Reitz, Rolf D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • In this paper, optimized operating parameters were found using multi-dimensional engine simulation software (KIVA-3V) and micro-genetic algorithm for heavy duty diesel engine. The engine operating condition considered was at 1,737 rev/min and 57 % load. Engine simulation model was validated using an engine equipped with a high pressure electronic unit injector (HEUI) system. Three important parameters were used for the optimization - boost pressure, EGR rate and start of injection timing. Numerical optimization identified HCCI-like combustion characteristics showing significant improvements for the soot and $NO_X$ emissions. The optimized soot and $NO_X$ emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively. Moreover, the optimum results met EPA 2007 mandates at the operating point considered.

Effect of EGR and Supercharging on the Diesel HCCI Combustion (디젤 예혼합 압축착화 엔진에서 배기가스 재순환과 과급의 영향)

  • Park, Se-Ik;Kook, Sang-Hoon;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.58-64
    • /
    • 2006
  • Homogeneous charge compression ignition(HCCI) combustion is an advanced technique for reducing the hazardous nitrogen oxide(NOx) and particulate matter(PM) in a diesel engine. NOx could be reduced by achieving lean homogeneous mixture resulting in combustion temperature. PM could be also reduced by eliminating fuel-rich zones which exist in conventional diesel combustion. However previous researches have reported that power-output of HCCI engine is limited by the high intensive knock and misfiring. In an attempt to extend the upper load limit for HCCI operation, supercharging in combination with Exhaust Gas Recirculation(EGR) has been applied: supercharging to increase the power density and EGR to control the combustion phase. The test was performed in a single cylinder engine operated at 1200 rpm. Boost pressures of 1.1 and 1.2 bar were applied. High EGR rates up to 45% were supplied. Most of fuel was injected at early timing to make homogeneous mixture. Small amount of fuel injection was followed near TDC to assist ignition. Results showed increasing boost pressure resulted in much higher power-output. Optimal EGR rate influenced by longer ignition delay and charge dilution simultaneously was observed.