• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.025 seconds

A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Seo, Cheol-Sik;Cho, Gyu-Pan;Jung, Do-Young;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high power-factor. The proposed topology is integrated half-bridge boost rectifier as power factor corrector(PFC) and half-bridge high frequency resonant converter into a single-stage. The input stage of the half-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. Simulation results have demonstrated the feasibility of the proposed high frequency resonant converter. Characteristics values based on characteristics analysis through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

Design of LED Drive using MLCC Output Capacitor (MLCC 출력 콘덴서를 이용한 LED 구동드라이브 설계)

  • Han, Man-Seung;Lee, Sang-Hun;Cho, Su-Eog;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.448-456
    • /
    • 2011
  • In this paper, we proposed a LED driver that allows to use a long lifetime MLCC with small voltage capacity to replace the electrolytic condenser that has been used at the output part by storing only the voltage fluctuation due to temperature variation in the output condenser. The proposed LED driver can allow to use a long lifetime MLCC with small power loss as the output condenser instead of the conventional electrolytic condenser with short lifetime because it stores only the voltage fluctuation due to the temperature variation of the LED light source in the output condenser by connecting the output condenser with the input power supply in series in the basic topology of the conventional boost DC/DC converter. In this study, we performed a simulation to verify the conventional DC/DC converter and the proposed DC/DC converter. It was shown that the DC/DC converter proposed through the experiment allows to use MLCC as the output condenser and the efficiency can be improved.

A Study on Generalized Output Capacitor Ripple Current Equation of Interleaved Boost Converter (인터리브드 부스트 컨버터에 대한 일반화된 출력 커패시터 리플전류 수식에 관한 연구)

  • Jung, Yong-Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1429-1435
    • /
    • 2012
  • DC-DC converter commonly used in photovoltaic systems, fuel cell systems and electric vehicles is a boost converter. The interleaved boost converter, connected in parallel by several boost converters and operated by the phase difference to reduce the input and output current ripple, has been widely used in recent years. Because of small input and output current ripples, the circuit can reduce the size of the input and output capacitors. Thus, instead of conventional electrolytic capacitor, the film capacitor with high reliability can be used and this is the life and reliability of the entire system can be improved. In this paper, the output current ripple formulas of the multi-stage interleaved boost converter are derived, and the characteristics in accordance with duty are found out. In order to verify the abovementioned contents, the derived results will make a comparison with the calculated values by using PSIM tool.

Regenerative Current Control Method of Bidirectional DC/DC Converter for EV/HEV Application

  • Lee, Jung-Hyo;Jung, Doo-Yong;Lee, Taek-Kie;Kim, Young-Ryul;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.97-105
    • /
    • 2013
  • The control method of the bidirectional DC/DC converter for instantaneous regenerative current control is described in this paper. The general method to control the DC/DC converter is the output voltage control. However, the regenerative current cannot be controlled to be constant with this control method. To improve the performance of the conventional control method, the DC-link voltage of the inverter is controlled within the tolerance range by the instantaneous boost and buck operations of the bidirectional DC/DC converter. By the proposed control method, the battery current can be controlled to be constant regardless of the motor speed variation. The improved performance of the DC/DC converter controlled by the proposed control method is verified by the experiment and simulation of the system with the inverter and IPMSM(Interior Permanent Magnet Synchronous Motor) which is operated by the reduced practical speed profile.

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

A New Isolated Boost DC/DC Converter for Battery Drive Applications (축전지 구동 응용을 위한 새로운 승압형 DC/DC 컨버터)

  • 노정욱;한승훈;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.34-38
    • /
    • 2000
  • 낮은 입력 전압원 응용에 적합한 절연된 승압형 dc/dc 컨버터를 제안한다. 제안된 컨버터는 자기 결합 기법을 사용하여 낮은 스위칭 전류 스트레스, 넓은 입력 전압 범위, 돌입전류 방지등의 특성을 가진다. 비교 분석과 실험결과를 통하여 제안된 컨버터의 우수성을 입증한다.

Dual-Output DC-DC Power Supply with Buck-Boost and Zeta Converter

  • Kanthaphayao, Yutthana;Rungruengphalanggul, Yuttasak;Chaisawadi, Ake
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.74.4-74
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Circuit modified $\textbullet$ Implement of the dual output converter $\textbullet$ Conclusions

  • PDF

Analysis, Design and Implementation of an Interleaved Single-Stage AC/DC ZVS Converters

  • Lin, Bor-Ren;Huang, Shih-Chuan
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.258-267
    • /
    • 2012
  • An interleaved single-stage AC/DC converter with a boost converter and an asymmetrical half-bridge topology is presented to achieve power factor correction, zero voltage switching (ZVS) and load voltage regulation. Asymmetric pulse-width modulation (PWM) is adopted to achieve ZVS turn-on for all of the switches and to increase circuit efficiency. Two ZVS half-bridge converters with interleaved PWM are connected in parallel to reduce the ripple current at input and output sides, to control the output voltage at a desired value and to achieve load current sharing. A center-tapped rectifier is adopted at the secondary side of the transformers to achieve full-wave rectification. The boost converter is operated in discontinuous conduction mode (DCM) to automatically draw a sinusoidal line current from an AC source with a high power factor and a low current distortion. Finally, a 240W converter with the proposed topology has been implemented to verify the performance and feasibility of the proposed converter.

High Efficiency DC-DC Converter for Fuel Cell System (연료전지 계통 연계형 고효율 DC-DC 컨버터)

  • Oh, Eun-Tae;Yoon, Soo-Young;Lee, Yoon-Jae;You, Gwang-Min;Chae, Hyung-Jun;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2410-2415
    • /
    • 2009
  • Studying for environmental friendly and efficient energy source is now actively under way on because problems like environmental pollution and exhaust of natural resources are in issue. Fuel Cell which is an alternative energy source has low voltage and high current characteristic, therefore boost up voltage converter and DC-AC converter is required to use as a common power source. In this paper, DC-DC converter which has high efficient and high power density is proposed and verified by experimental result.

Novel Current Stress Reduction Technique for Boost Integrated Half-Bridge DC/DC Converter with Voltage Doubler Type Rectifier (전압 체배 정류단을 갖는 부스트 입력형 하프브리지 DC/DC 컨버터를 위한 새로운 전류 스트레스 저감 기법)

  • Park Hong-Sun;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.39-42
    • /
    • 2006
  • a current stress reduction technique for a boost integrated half-bridge (BIHB) DC/DC converter with voltage doubler type rectifier is proposed for digital car audio amplifier application. In the proposed circuit, two external capacitors are added parallel to the rectifier diodes in the secondary side of the transformer to shape the primary and the secondary current like rectangular waveforms in every switching instance. The experimental results of a 200W industrial sample show that the peak primary current decreases about by 10A. Thus, the proposed technique shows improved high efficiency.

  • PDF