• Title/Summary/Keyword: Boost 컨버터

Search Result 743, Processing Time 0.027 seconds

Design of a DC-DC Converter for Portable Device (휴대기기용 DC-DC 부스트 컨버터 집적회로설계)

  • Lee, Ja-kyeong;Song, Han-Jung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • In This Paper, A DC-DC Boost Converter for Portable Device has been Proposed. The Converter Which is Operated with 1 MHz High Switching Frequency is Capable of Reducing Mounting Area of Passive Devices Such as Inductor and Capacitor, Consequently is Suitable for Portable Device. This Boost Converter Consists of a Power Stage and a Control Block and a Protect Block. Proposed DC-DC Boost Converter has been Designed a 0.18 um Magnachip CMOS Process Technology, we Examined Performances of the Fabricated Chip and Compared its Measured Results with SPICE Simulation Data. Simulation Results Show that the Output Voltage is 4.8 V in 3.3 V Input Voltage, Output Current 95 mA Which is Larger than 20~50 mA.

Improved Full Wave Mode ZVT PWM DC-DC Converters (개선된 전파형 ZVT PWM DC-DC 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • In this thesis, improved full wave mode ZVT(Zero-Voltage-Transition) PMW DC-DC Converters are presented to maximize the regeneration ratio of resonant energy by only putting an additional diode In series with the auxiliary switch. The operation of the auxiliary switch in a half wave mode makes it possible soft switching operation of all switches including the auxiliary switch whereas it is turned off with hard switching in conventional converter. The increase of the regeneration ratio to resonant energy results in low commutation losses and minimum voltage and current stresses. The operation principles of the improved ZVT PWM DC-DC Converters are theoretically analyzed using the boost converter topology as an example. Both theoretical analysis and experimental results verify the validity of the PWM boost converter topology with the improved full wave mode ZVT PWM converters.

A Study on Waveform Analysis of Input Current for Novel Boost AC-DC Converter of High Power Factor (새로운 고역률 승압형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.102-108
    • /
    • 2005
  • In this paper, authors propose novel boost AC-DC converter of high power factor and analyze for waveform and harmonics component of input current. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of at input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of conventional converter of high power factor. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

Simple Structure LED-Driving Power Converter with High Power Factor (높은 역률을 가지는 단순 구조 LED 구동 전력컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.767-773
    • /
    • 2018
  • This paper proposes the simple structure LED-driving power converter with high power factor. As the proposed power converter combines the PFC boost converter and the conventional flyback converter into only one power conversion circuit, it simplifies the structure of LED-driving power converter. Thus the proposed converter is controlled using only one PWM controller IC, and it achieves high power factor, constant output voltage/current and cost-effectiveness. Therefore the proposed converter is suitable for the industry production and utilization of LED-light-system. In this paper, the operation analysis and design example of the proposed converter are explained, briefly. Also experimental results of the prototype that is implemented based on the designed circuit parameters are shown to validate operation characteristics of the proposed converter.

Design of Buck-Boost DC-AC Inverter Using Microcontroller (마이크로컨트롤러를 이용한 벅-부스트 DC-AC 인버터 설계)

  • Park, Jong-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.45-51
    • /
    • 2009
  • The single phase buck-boost DC-AC inverter generates an alternating output voltage as the differential voltage of two DC-DC individual buck-boost converters. Two converters are driven with DC-biased and $180[^{\circ}]$ phase-shifted sinusoidal references. The peak value of the inverter alternating output voltage does not depend on the direct input voltage. In this paper, single phase buck-boost DC-AC inverter is designed and implemented on a prototype with digital controller using a microcontroller.

An Improvement Parallel to the Efficiency of Boost Converter for Power Factor Correction (PFC용 부스트 컨버터의 병렬화에 의한 효율 개선)

  • 전내석;장수형;전일영;박영산;안병원;이성근;김윤식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.120-124
    • /
    • 2001
  • A new technique for improving the efficiency of single-phase high-frequency boost converter is proposed. This converter includes an additional low-frequency boost converter which is connected to the main high-frequency switching device in parallel. The additional converter is controlled at lower frequency. Most of the current flows in the low-frequency switch and so, high-frequency switching loss is greatly reduced accordingly Both switching device are controlled by a simple method; each controller consists of a one-shot multivibrator, a comparator and an AND gate. The converter works cooperatively in high efficiency and acts as if it were a conventional high-frequency boost converter with one switching device. The proposed method is verified by simulation. This paper describes the converter configuration and design, and discusses the steady-state performance concerning the switching loss reduction and efficiency improvement.

  • PDF

A Soft Switching Scheme using a Single Resonant Inductor in Interleaved Boost Converter (Interleaved 부스트 컨버터에서 단일 공진 인덕터를 이용한 소프트 스위칭 기법)

  • Park, Nam-Ju;Lee, Dong-Myung;Ha, Dong-Hyun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2008
  • In this paper, an interleaved boost converter (IBC) with ZVT cell using a single resonant inductor in continuous conduction mode (CCM) is proposed. The IBC with the proposed ZVT cell has advantages such as a simple circuit, reduced size and low cost by using a single resonant inductor. It is more suitable for high power applications. The proposed ZVT cell circuit and principles for the IBC are explained in detail. The validity of the IBC with proposed ZVT cell is verified through experimental results.

Isolated DC/DC Converter with Very Wide Input Voltage Ranges for Emergency Power Back-up System(EPBS) (비상전원 공급장치를 위한 넓은 입력전압 범위를 갖는 절연형 DC/DC 컨버터)

  • Chae, Hyung-Jun;Kim, Kyoung-Dong;Oh, Hyung-Rock;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents a design and implementation of DC/DC converter with very wide input voltage ranges for EPBS whose input voltage is from 30V to 400V and output voltage is 48V. This converter is comprised of two stages that one is for control and the other is for only galvanic isolation. The proposed converter uses the hard-switched buck-boost topology for control purpose and soft-switched LLC resonant converter for isolation. The proposed converter has been verified with 300W design.

Improved modeling and control of integrated boost-flyback converter for high step-up applications (고승압비를 갖는 부스트-플라이백 컨버터의 개선된 모델링 방법 및 제어)

  • Seo, Sang-Uk;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1151-1152
    • /
    • 2011
  • 본 논문에서는 부스트-플라이백(Integrated Boost-Flyback Converter, IBFC) 직렬 연결 구조 컨버터의 동작 특성 해석 및 정확한 제어기 설계를 위한 개선된 모델링 방법을 제시한다. 주 스위치에 의해 IBFC의 부스트, 플라이백 컨버터가 서로 다른 도통 모드로 동시에 동작 하기 때문에 2대 컨버터의 모델링과 회로 해석을 위한 이론적인 모델링 접근방법과 수학적인 계산과정이 복잡하다. 따라서 IBFC를 등가 전류 소스를 포함한 부스트, 플라이백 컨버터로 각각 나누어 상태 공간 평균화 방법을 이용하여 회로 방정식을 독립적으로 유도한 후, 이 회로 방정식을 종합하여 IBFC의 완전한 상태 공간 방정식을 얻을 수 있다. 제안된 방법은 IBFC의 복잡한 모델링을 간단하게 해 주며, 수학적인 계산 과정도 간소화 시킬 수 있는 장점이 있다. 이를 바탕으로 정상 상태 해석 및 높은 출력 전압 추종 제어기를 설계하였다. 시뮬레이션과 실험 결과를 제시하여 제안된 방법의 유효함을 검증하였다.

  • PDF

High-Power-Factor Boost Rectifier with a Passive Energy Recovery Snubber (에너지재생 수동 스너버를 갖는 고역률 부스트 정류기)

  • Kim, Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.298-306
    • /
    • 1998
  • MOSFET 스위치로 구현된 고역률 부스트 정류기에 적합한 무손실 수동스너버가 턴오프 및 턴온 동안에 동작하는 등가회로로 기술된다. 이러한 등가회로는 주스위치에 가해지는 과도전압, 스너버 전류, 및 턴-오프 과도시간을 예측할 수 있도록 분석된다. 제안된 스너버와 결합된 부스트 컨버터의 주 스위치는 영전류에서 턴-온되기 때문에 턴-온 손실이 거의 없고, 제한된 전압 스트레스에서 턴-오프되므로 주 스위치의 전압 스트레스에 의한 파손을 방지할 수 있다. 또한 본 스너버를 사용한 부스트 컨버터의 제어 방법이 기존의 부스트 컨버터와 동일하기 때문에 기존의 부스트 컨버터용 제어회로를 그대로 쓸 수 있다. 제안된 에너지재생 수동스너버를 갖는 고역률 정류기가 구현되고 실험결과가 제시된다.

  • PDF